水泥石的工程性质_第1页
水泥石的工程性质_第2页
水泥石的工程性质_第3页
水泥石的工程性质_第4页
水泥石的工程性质_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、水泥石的工程性质,强度 变形 耐久性(抗冻性、抗渗性、抗腐蚀性),第一部分 强度,一、强度理论 1. 脆性材料断裂理论 式中: 断裂应力; E弹性模量; 单位面积的材料表面能; C裂缝长度。,2. 结晶理论 该理论认为:硬化水泥浆体是由多种形貌的C-S-H以及钙矾石、氢氧化钙和单硫型水化硫铝酸钙等晶体交织在一起形成的。它们密集连生交叉结合、接触,形成牢固的结晶结构网。水泥石的强度取决于结晶结构网中接触点的强度与数量。 式中: f水泥石多孔体的强度; 结晶接触点的强度; F断裂面上结晶接触点的面积。,3. 孔隙率理论 f=AXAn 式中: f水泥石抗压强度; A、n经验常数,与水泥熟料矿物组成有

2、关; XA胶空比,水化水泥在水泥石体积中填充的程度,XA=凝胶体的体积/(凝胶体体积+毛细孔体积): S=S0Xn 式中: S0毛细孔隙率为零(即X=1)时的浆体强度; n实验常数,与水泥种类以及实验条件有关,波动于2.63.0之间。,典型的强度与胶空比曲线。(见P107图2-2-8-1) 其它学者还提出许多强度与水泥石孔隙率的半经验公式。(P106),二、影响水泥石强度的因素,1. 水泥矿物组成及含量 硅酸盐矿物的含量是决定水泥强度的主要因素,28天强度基本上依赖于C3S含量。C2S对于后期强度贡献大。C3A主要对极早期的强度有利,C4AF不仅对于水泥的早期强度有相当的贡献,也有助于后期强度

3、的发展,而且对抗折强度影响较大。 2. 水灰比和水化程度 水灰比越大,产生的毛细孔隙越多,胶空比越小,强度越小。一般强度与水灰比之间有很好的线性关系。(图2-2-8-4) 随着水化程度的提高,凝胶体积不断增加,毛细孔隙率相应减少。,3. 孔结构 当孔隙率相等时,孔径(指平均孔径,以下同)小,则强度大。 孔径随总孔隙率降低而减小。随着水化程度的提高,孔隙率减小,大孔减少,小孔增加,即平均孔径减小。 水泥石中对强度最不利的影响产生于“工艺”孔,尤其是大孔径。 除以上因素外,养护条件、拌和及成型条件、龄期以及试验方法等均影响水泥石强度的形成与发展。,第二部分 变形,一、弹性模量 水泥石的应力应变曲线

4、在应变较小时成线性关系,而当应变较大时,不再成线性关系。 水泥石的弹性模量与孔隙率有很大关系。水泥石的弹性模量(动模量)E与水泥石的毛细孔(孔径10010-10m)孔隙率P有如下关系(Helmuth和Turk ): E=E0(1-P)3 式中:E0在P=0时水泥石的弹性模量,E0大约为30000MPa。,二、收缩变形,水泥石的收缩变形包括化学收缩、失水收缩(干缩)、碳化收缩、徐变。 注:这部分简单介绍,在混凝土的部分要进行详细介绍。 1.化学收缩 对于水泥水体系而言,水化后总体积要缩小。 水泥熟料中各单矿物的缩减作用,无论就绝对数值或相对速度而言,大小排序如下: C3AC4AFC3SC2S 水

5、泥熟料的缩减量大小,通常与C3A的含量成线性关系。 影响:由于化学收缩作用所产生的孔隙,也会较大,会影响水泥石的抗冻性、抗渗性以及耐久性。,2. 失水收缩(干缩),湿胀干缩定义:湿度变化所引起的混凝土体积变形湿胀干缩,主要原因是水泥石中的凝胶水和毛细孔水的变化引起的。 水泥石和混凝土的收缩行为 水泥石在水中连续浸泡,产生相当小的连续膨胀; 第1次干燥时,收缩最大,其收缩值有部分是不可逆的,即再次吸水不能恢复。 试验证明:相对湿度为70%的空气中的收缩值为水中膨胀值的6倍,相对湿度为50%,为8倍。 混凝土的湿胀干缩变形重要的是干缩变形,因在约束下的收缩将导致混凝土开裂。,混凝土的干缩机理,干缩

6、来自材料内部水的损失,二者的关系如图所示,收缩值随着水的损失变化的斜率不一致。 环境湿度不同,有以下几种不同的干缩机理: 毛细张力 毛细孔和较大的凝胶孔中的自由水因大气水蒸气压降低而蒸发时,表面张力增加,产生拉伸应力,使得孔壁受压而收缩; 分离压 水泥石中的凝胶孔中的吸附水使得孔壁间存在分离压力(湿胀的原因),因干燥而吸附水损失时,将降低孔壁的分离压,引起整体收缩; 层间可挥发水的迁移,3. 碳化收缩 水泥石与二氧化碳作用产生的收缩称为碳化收缩。 空气中的二氧化碳含量虽然很低,但如果有一定的湿度,水泥石中的氢氧化钙与二氧化碳作用,生成碳酸钙和水,引起水泥石结构的解体,出现不可逆的碳化收缩。 条

7、件:二氧化碳的浓度;湿度。,4. 徐变 水泥石的变形P112图2-2-8-9。 徐变的机理 凝胶(包括晶体)的流变和凝胶(包括晶体)粒子间的滑移 故与凝集-结晶结构网接触点的性质、晶体与凝胶的比值等有关。 水泥石中凝胶水、吸附水或层间水的转移(如蒸发) 故徐变与干缩实际上互相促进,第三部分 抗冻性及抗渗性,一、抗冻性 宏观原因:水分结冰导致体积膨胀,对于孔壁产生一定的膨胀压力,导致孔壁产生微裂缝。 加入引气剂可以增加抗冻性的原因:气孔为水压力提供了外逸的空间;气泡在温度降低时体积收缩,可以平衡部分水结冰造成的膨胀;压缩的气泡作用于凝胶体并使凝胶水向毛细孔转移,凝胶水的转移伴随着体积的减小,可以

8、平衡部分水结冰造成的膨胀。 水泥石冻融变化时体积变化曲线(P113图2-2-8-10):其中永久变形的累积可以认为是微裂缝的逐步的扩展。 水泥石中可以结冰的水是可蒸发水,凝胶孔中的水在-78以上不会结冰。,结冰时的破坏机理: 机理一、静水压理论 水结冰体积增加时,未冻水被迫向外流动(即由凝胶孔向毛细孔流动),从而产生危害性的静水压力,导致水泥石破坏。 机理二、渗透压理论 当毛细孔水部分结冰时,未结冰水中所含的碱以及其它物质等溶质的浓度会增大,但是凝胶孔内的水不结冰,溶液浓度不变,因此产生浓度差。浓度差初始凝胶孔内的水向毛细孔扩散,产生渗透压,造成一定的膨胀压力。 机理三、热力学理论 当水泥石浆

9、体处于结冰环境中时,凝胶孔中的水以过冷的液态水存在,毛细管中的水以冰的形式存在,凝胶孔中的水处于高能状态,毛细管中的水处于低能状态,造成了热力学不平衡。冰和过冷水两者熵的差别迫使过冷水向毛细管迁移,这个过程会造成内部压力和系统膨胀。,抗冻性影响因素: 1. 孔隙率和孔径 孔隙率越小,孔径越细,则抗冻性越好。 2. 水泥矿物成分 C3S的含量越高,抗冻性越好(强度高),故硅酸盐水泥的抗冻性优于掺混合材水泥。 3. 水灰比 水灰比大,抗冻性差 4. 遭受冰冻前的养护龄期 该龄期越长,抗冻性越好。,二、抗渗性,1. 定义:指抵抗各种有害介质进入内部的能力。 2. 参数 渗透系数 式中: 总孔隙率;r

10、孔的水力半径(孔隙体积/孔隙表面积);液体的粘度;C常数。,3. 抗渗性影响因素 由渗透系数公式可以看出,主要是孔隙率和孔径(如主要是毛细孔影响抗渗性,而凝胶孔由于孔径小基本不影响抗渗性)。另外,还包括孔的连通程度(主要是毛细孔的连通程度)。 其它因素的影响均通过影响孔来影响抗渗性。如水灰比、硬化龄期等都影响抗渗性。,第四部分 水泥石的腐蚀与防止,水泥石的腐蚀:在某些环境条件(如受到某些侵蚀性液体或气体的作用)下,引起水泥石的结构逐渐破坏,强度降低,以致全部溃裂的现象称为水泥石的腐蚀。 水泥石的抗腐蚀性能可用耐蚀系数表示: 耐蚀系数:以同一龄期的分别浸在侵蚀性溶液中的水泥石试件强度与在淡水中养

11、护的试件强度的比值来表示。 耐腐蚀系数越大,水泥石的抗腐蚀性能也就越好。 水泥石腐蚀的原因很多,作用也很复杂,主要有软水腐蚀、盐类腐蚀、酸类腐蚀、强碱腐蚀等。 水泥中碱性物质:Ca(OH)2、水化铝酸钙。,(一)水泥石的几种主要侵蚀作用 1.软水腐蚀(溶出性侵蚀) 雨水、雪水、蒸馏水、工业冷凝水及含碳酸盐很少的河水与湖水等都属于软水。 水泥与软水接触水化产物氢氧化钙被溶出不断溶解流失孔隙增大,碱度下降并促使硬化水泥石的其它产物(如水化铝酸钙、水化硅酸钙)分解使水泥石结构遭受破坏。 在碱度较低时,水化硅酸钙分解成氢氧化钙和硅酸凝胶。 P116表2-2-8-7。,2.盐类腐蚀 (1)硫酸盐腐蚀 当

12、海水、沼泽水、工业污水等中含有碱性硫酸盐(如Na2SO4、K2SO4等)时,其中的水泥石还会受到硫酸盐的侵蚀。 Ca(OH)2 +硫酸盐CaSO4 硫酸钙亦能与水泥石中的固态水化铝酸钙作用,生成高硫型水化硫铝酸钙晶体。 4CaOAl2O312H2O+3CaSO4+20H2O3CaOAl2O33 CaSO431H20+Ca(OH)2 反应是在固相中进行的高硫型水化硫铝酸钙结合着大量结晶水其体积膨胀为原来的水化铝酸钙体积的2.5倍水泥石产生很大的内应力水泥石开裂、强度降低和造成破坏。,(2)镁盐腐蚀 海水、地下水中常含有大量镁盐 硫酸镁 (MgSO4) 氯化镁(MgCl2) MgSO4十Ca(0H

13、)2十2 H20 CaSO42 H20十Mg(0H)2 (3CaOAl2036 H20十3(CaSO42 H20)十19 H20 3CaOAl2033CaSO431 H20 ) MgCl2十Ca(0H)2CaCl2十Mg(0H)2 反应的结果: 氢氧化镁(Mg(0H)2)松软而无胶凝能力 二水硫酸钙(Ca SO42H20)又将引起硫酸盐的破坏作用 氯化钙(CaC12)易溶解于水 均能使水泥石强度降低或破坏。 硫酸镁对水泥石起着硫酸盐和镁盐的双重腐蚀作用。,3.酸类腐蚀 (1)碳酸腐蚀 在工业污水、地下水中常溶解有较多的二氧化碳 二氧化碳与水泥石中的氢氧化钙反应生成碳酸钙继续与含碳酸的水作用变成

14、易溶于水的碳酸氢钙(Ca(HCO3)2),由于碳酸氢钙的溶解使Ca(0H)2浓度降低,导致水泥石中其它产物的分解,而使水泥石结构破坏。 开始:Ca(0H)2十C02十H20CaC03十2 H20 然后:CaC03十C02十H20 Ca(HCO3)2 可逆的,当碳酸超过平衡浓度(溶液中的pH7)时,则上式反应向右进行,形成碳酸腐蚀。,(2)一般酸的腐蚀(HCl、H2SO4) 在工业废水、地下水、沼泽水中常含无机酸和有机酸;工业窑炉中的烟气常含有二氧化硫,遇水后生成亚硫酸。 各种酸类与水泥石中的氢氧化钙作用生成化合物或者易溶于水,或者体积膨胀而导致水泥石破坏。 对水泥石腐蚀作用最快的是无机酸中的盐

15、酸、氢氟酸、硝酸、硫酸和有机酸中的醋酸、蚁酸和乳酸等。 例如,盐酸和硫酸分别与水泥石中氢氧化钙作用,其反应式如下: 2HCl十Ca(0H)2CaCl2十2H20 氯化钙易溶于水而导致化学腐蚀型破坏 H2SO4十Ca(0H)2CaSO42H20 石膏对水泥石产生硫酸盐膨胀型破坏。,4.强碱腐蚀 碱类溶液如浓度不大时一般是无害的,但铝酸盐含量较高的硅酸盐水泥遇到强碱作用后也会破坏。 (1)氢氧化钠可与水泥熟料中未水化的铝酸盐作用,生成易溶的铝酸钠,其反应式为: 3CaO Al2O3十6NaOH3Na2OAl2O3十3Ca(0H)2 (2)当水泥石被氢氧化钠溶液浸透后又在空气中干燥,与空气中的二氧化

16、碳作用生成碳酸钠 2NaOHCO2 Na2CO3H20 碳酸钠在水泥石毛细孔中结晶沉淀,可使水泥石胀裂。,铵盐腐蚀: 以硝酸铵为例: 硝酸铵潮解后, 与水泥中的CaCO3、Ca ( OH) 2、CaO 作用生成硝酸钙, 并释放出氨气和CO2。 CaCO3+ 2NH4NO3= Ca(NO3) 2+ 2NH3+ CO2+ H2O Ca(OH)2+ 2NH4NO3= Ca(NO3 )2+ 2NH3+ 2H2O CaO+ 2NH4NO3= Ca(NO3)2+ 2NH3+ H2O 在25时还会继续进行如下反应: Ca(OH)2+ Ca(NO3)2 + 2H2O= Ca2N2O33H2O+ 2O2 上述反

17、应生成的硝酸盐易被水溶解冲散, 在水流的影响下, 将使水泥砂浆、混凝土不断溶蚀,孔隙增大, 强度下降, 导致破坏。,课本上对于水介质对于水泥石的侵蚀作用分类 第一类侵蚀:溶出侵蚀(淡水侵蚀) 将已硬化的水泥石中的固相组分逐渐溶解带走,使水泥石结构遭受破坏。 第二类侵蚀:离子交换侵蚀(包括碳酸、有机酸及无机酸、镁盐等的侵蚀) 水泥石的组分与水介质发生了离子交换反应,反应生成物或者是容易溶解的物质为水带走,或者是生成了一些没有胶结能力的无定型物质,破坏了原有水泥石的结构。 第三类侵蚀:硫酸盐侵蚀。 在混凝土土内部孔隙内生城难溶的盐类,这些盐类结晶逐渐积累长大,体积增加,会使混凝土内部产生有害的内应力。,环境水侵蚀分级 P118表2-2-8-9和2-2-8-10。,(二)水泥石腐蚀的原因及防止措施 1. 水泥石腐蚀的基本原因 内因:水泥石中存在有引起腐蚀的组成成分氢氧化钙和水化铝酸钙;水泥石本身不密实,有很多毛细孔通道,侵蚀性介质易进入其内部; 外因 :外界存在腐蚀性介质和条件。,2. 水泥石腐蚀的防止 根据环境特点,合理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论