




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、*2.5 一元二次方程的根与系数的关系,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.掌握一元二次方程的根与系数的关系.(重点) 2.会利用根与系数的关系解决有关的问题.(难点),学习目标,导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac 0 时,方程无实数根
2、.,算一算 解下列方程并完成填空:,1,1,2,-1,-1,1,讲授新课,猜一猜,(1)若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?,重要发现 如果方程x2+px+q=0的两根是x1,x2,那么x1+x2= -p ,x1 x2=q.,(x-x1)(x-x2)=0.,x2-(x1+x2)x+x1x2=0,,x2+px+q=0,,x1+x2= -p ,x1 x2=q.,猜一猜,(2)如果一元二次方程 ax2+bx+c=0(a0)
3、的两个根分别是x1、 x2,那么,你可以发现什么结论?,证一证:,一元二次方程的根与系数的关系 (韦达定理),如果一元二次方程 ax2+bx+c=0(a0)的两个根分别是x1、 x2,那么,满足上述关系的前提条件,b2-4ac0.,归纳总结,例1:利用根与系数的关系,求下列方程的两根之和、两根之积. (1)x2 + 7x + 6 = 0;,解:这里 a = 1 , b = 7 , c = 6. = b2 - 4ac = 72 4 1 6 = 25 0. 方程有两个实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = -7 , x1 x2 = 6.,(2)2x2 - 3x -
4、 2 = 0.,解:这里 a = 2 , b = -3 , c = -2. = b2 - 4ac = (- 3)2 4 2 (-2) = 25 0, 方程有两个实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = , x1 x2 = -1 .,例2 已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k的值.,解:设方程 5x2+kx-6=0的两个根分别是x1、x2,其中x1=2 . 所以:x1 x2=2x2= 即:x2= 由于x1+x2=2+ = 得:k=-7. 答:方程的另一个根是 ,k=-7.,已知方程3x2-18x+m=0的一个根是1,求它的另一个根及m的值.
5、,解:设方程 3x2-18x+m=0的两个根分别是x1、x2,其中x1=1. 所以:x1 + x2=1+x2=6, 即:x2=5 . 由于x1x2=15= 得:m=15. 答:方程的另一个根是5,m=15.,例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.,解:根据根与系数的关系可知:,设x1,x2为方程x2-4x+1=0的两个根,则: (1)x1+x2= , (2)x1x2= , (3) , (4) .,4,1,14,12,例4:设x1,x2是方程 x2 -2(k - 1)x + k2 =0 的两个实数根,且x12 +x22 =4,求k的值.,解:由方程有两个实数根,得 =
6、 4(k - 1)2 - 4k2 0 即 -8k + 4 0. 由根与系数的关系得 x1 + x2 = 2(k -1) , x1 x2 =k 2. x12 + x22 = (x1 + x2)2 - 2x1x2 = 4(k -1)2 -2k2 = 2k2 -8k + 4. 由 x12 + x22 = 4,得 2k2 - 8k + 4 = 4, 解得 k1= 0 , k2 = 4 . 经检验, k2 = 4 不合题意,舍去.,总结常见的求值:,求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.,1.不解方程,求方程两根的和与两根的积: (1)x2 +
7、3x -1= 0; (2)2x2 - 4x + 1 = 0.,解:(1) 这里 a = 1 , b = 3 , c = -1. = b2 - 4ac = 32 - 4 1 (-1) = 13 0 有实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = -3 , x1 x2 = -1 . (2) 这里 a = 2 , b = -4 , c = 1. = b2 - 4ac = ( -4 )2 - 4 1 2 = 8 0 有实数根. 设方程的两个实数根是 x1, x2, 那么 x1 + x2 = 2 , x1 x2 = .,当堂练习,2.已知方程 3x2 -19x + m=0的一
8、个根是1,求它的另一个根及m的值.,解:将x = 1代入方程中: 3 -19 + m = 0. 解得 m = 16, 设另一个根为x1,则: 1 x1 = x1 =,3.设x1,x2是方程3x2 + 4x 3 = 0的两个根.利用根系数之间的关系,求下列各式的值. (1) (x1 + 1)(x2 + 1); (2),解:根据根与系数的关系得: (1)(x1 + 1)(x2 + 1) = x1 x2 + x1 + x2 + 1= (2),4. 当k为何值时,方程2x2-kx+1=0的两根差为1。,解:设方程两根分别为x1,x2(x1x2),则x1-x2=1, (x1-x2)2=(x1+x2)2-4x1x2=1,拓展提升,由根与系数的关系,得,5.已知关于x的一元二次方程mx2-2mx+ m -2=0 (1)若方程有实数根,求实数m的取值范围. (2)若方程两根x1,x2满足x1-x2= 1 求m的值.,解:(1)方程有实数根,m的取值范围为m0,(2)方程有实数根x1,x2, (x1-x2)2=(x1+x2)2-4x1x2=1,解得m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 杭州中学分班考数学试卷
- 淮安九年级期末数学试卷
- 贵港三模数学试卷
- 健康管理师课件讲义
- 2025届河南省洛阳市偃师高中物理高一第二学期期末调研试题含解析
- 2025-2030年中国锡铅焊丝项目投资可行性研究分析报告
- 健康社区课件
- 2025年中国微信营销行业市场深度调研分析及投资前景研究预测报告
- 花椒加工厂可行性研究报告
- 中国维生素B12行业市场调研分析及投资战略咨询报告
- 呼吸困难的识别与护理
- 常用母材与焊材选用表
- 2025年中国远洋海运集团限公司校园招聘高频考题难、易错点及模拟试题(共500题)附带答案详解
- 热射病的护理
- 2025年电子束蒸发设备行业深度研究报告
- 2025年浙江临海市交通投资集团有限公司招聘笔试参考题库附带答案详解
- 小学英语学科融合教学心得体会
- 《高级工程师施工管理》课件
- 中国2型糖尿病防治指南(2024版)解读课件
- 2025-2030中国不锈钢材行业发展分析及发展趋势与投资前景预测研究报告
- 2025年道路运输安全员核心备考题库(含典型题、重点题)
评论
0/150
提交评论