



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选文档Hough变换原理霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,它通过一种投票算法检测具有特定形状的物体。该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。霍夫变换于1962年由Paul Hough 首次提,后于1972年由Richard Duda和Peter Hart推广使用,经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆。霍夫变换运用两个坐标空间之间的变换将在一个空间中具有相同形状的曲线或直线映射到另一个坐标空间的一个点上形成峰值,从而把检测任意形状的问题转化为统计峰值问
2、题,上一节中已经介绍了车道的直线特征,本节中介绍hough变换检测直线的原理和检测结果。我们知道,一条直线在直角坐标系下可以用y=kx+b表示, 霍夫变换的主要思想是将该方程的参数和变量交换,即用x,y作为已知量k,b作为变量坐标,所以直角坐标系下的直线y=kx+b在参数空间表示为点(k,b),而一个点(x1,y1)在直角坐标系下表示为一条直线y1=x1k+b,其中(k,b)是该直线上的任意点。为了计算方便,我们将参数空间的坐标表示为极坐标下的和。因为同一条直线上的点对应的(,)是相同的,因此可以先将图片进行边缘检测,然后对图像上每一个非零像素点,在参数坐标下变换为一条直线,那么在直角坐标下属
3、于同一条直线的点便在参数空间形成多条直线并内交于一点。因此可用该原理进行直线检测:4-13 参数空间变换结果如图 413. 所示,对于原图内任一点(x,y)都可以在参数空间形成一条直线,以图中一条直线为例有参数(,)=(69.641,30),所有属于同一条直线上的点会在参数空间交于一点,该点即为对应直线的参数。由该图中所有直线所得到的(,)在参数空间中得到一系列对应曲线见图 414 霍夫统计变换结果。由霍夫变换检测结果见图 415(c)所示。一、简单介绍Hough变换是图像处理中从图像中识别几何形状的基本方法之一。Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲
4、线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。二、Hough变换的基本思想设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k-b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x-y平面上的一个前景像素点就对应到参数平面上的一
5、条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等)对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直
6、线,那么最终在参数平面上就会看到两个峰值点,依此类推。简而言之,Hough变换思想为:在原始图像坐标系下的一个点对应了参数坐标系中的一条直线,同样参数坐标系的一条直线对应了原始坐标系下的一个点,然后,原始坐标系下呈现直线的所有点,它们的斜率和截距是相同的,所以它们在参数坐标系下对应于同一个点。这样在将原始坐标系下的各个点投影到参数坐标系下之后,看参数坐标系下有没有聚集点,这样的聚集点就对应了原始坐标系下的直线。在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)
7、。这样,图像平面上的一个点就对应到参数p-theta平面上的一条曲线上,其它的还是一样。三、Hough变换推广1、已知半径的圆其实Hough变换可以检测任意的已知表达形式的曲线,关键是看其参数空间的选择,参数空间的选择可以根据它的表达形式而定。比如圆的表达形式为 ,所以当检测某一半径的圆的时候,可以选择与原图像空间同样的空间作为参数空间。那么圆图像空间中的一个圆对应了参数空间中的一个点,参数空间中的一个点对应了图像空间中的一个圆,圆图像空间中在同一个圆上的点,它们的参数相同即a,b相同,那么它们在参数空间中的对应的圆就会过同一个点(a,b),所以,将原图像空间中的所有点变换到参数空间后,根据参
8、数空间中点的聚集程度就可以判断出图像空间中有没有近似于圆的图形。如果有的话,这个参数就是圆的参数。2、未知半径的圆对于圆的半径未知的情况下,可以看作是有三个参数的圆的检测,中心和半径。这个时候原理仍然相同,只是参数空间的维数升高,计算量增大。图像空间中的任意一个点都对应了参数空间中的一簇圆曲线。 ,其实是一个圆锥型。参数空间中的任意一个点对应了图像空间中的一个圆。3、椭圆椭圆有5个自由参数,所以它的参数空间是5维的,因此他的计算量非常大,所以提出了许多的改进算法。四、总结图像空间中的在同一个圆,直线,椭圆上的点,每一个点都对应了参数空间中的一个图形,在图像空间中这些点都满足它们的方程这一个条件
9、,所以这些点,每个投影后得到的图像都会经过这个参数空间中的点。也就是在参数空间中它们会相交于一点。所以,当参数空间中的这个相交点的越大的话,那么说明元图像空间中满足这个参数的图形越饱满。越象我们要检测的东西。Hough变换能够查找任意的曲线,只要你给定它的方程。Hough变换在检验已知形状的目标方面具有受曲线间断影响小和不受图形旋转的影响的优点,即使目标有稍许缺损或污染也能被正确识别。(I)直线篇1 直线是如何表示的?对于平面中的一条直线,在笛卡尔坐标系中,常见的有点斜式,两点式两种表示方法。然而在hough变换中,考虑的是另外一种表示方式:使用(r,theta)来表示一条直线。其中r为该直线
10、到原点的距离,theta为该直线的垂线与x轴的夹角。如下图所示。2 如果坐标系中有多个点,又怎样识别出哪些点在一条直线上呢?使用hough变换来检测直线的思想就是:为每一个点假设n个方向的直线,通常n=180,此时检测的直线的角度精度为1,分别计算这n条直线的(r,theta)坐标,得到n个坐标点。如果要判断的点共有N个,最终得到的(r,theta)坐标有N*n个。有关这N*n个(r,theta)坐标,其中theta是离散的角度,共有180个取值。最重要的地方来了,如果多个点在一条直线上,那么必有这多个点在theta=某个值theta_i时,这多个点的r近似相等于r_i。也就是说这多个点都在直
11、线(r_i,theta_i)上。3 下面拿个例子说明: 如果空间中有3个点,如何判断这三个点在不在一条直线上,如果在,这条直线的位置为?这个例子中,对于每个点均求过该点的6条直线的(r,theta)坐标,共求了3*6个(r,theta)坐标。可以发现在theta=60时,三个点的r都近似为80.7,由此可判定这三个点都在直线(80.7,60)上。通过 rtheta 坐标系可以更直观表示这种关系,如下图:图中三个点的(r,theta)曲线汇集在一起,该交点就是同时经过这三个点的直线。 在实际的直线检测情况中,如果超过一定数目的点拥有相同的(r,theta)坐标,那么就可以判定此处有一条直线。在r
12、theta 坐标系图中,明显的交汇点就标示一条检测出的直线。如下图,可以判定出平面上的点共构成了两条直线,即检测出两条直线。4 代码:在matlab中提供了hough变换的代码,有hough,houghlines,houghpeaks,具体的使用可以在help中查到。(II)圆篇继使用hough变换检测出直线之后,顺着坐标变换的思路,提出了一种检测圆的方法。1 如何表示一个圆?与使用(r,theta)来表示一条直线相似,使用(a,b,r)来确定一个圆心为(a,b)半径为 r 的圆。2 如何表示过某个点的所有圆?某个圆过点(x1,y1),则有:(x1-a1)2 + (y1-b1)2 = r12
13、。那么过点(x1,y1)的所有圆可以表示为(a1(i),b1(i),r1(i)),其中r1(0,无穷),每一个 i 值都对应一个不同的圆,(a1(i),b1(i),r1(i))表示了无穷多个过点(x1,y1)的圆。3 如何确定多个点在同一个圆上?如(2)中说明,过点(x1,y1)的所有圆可以表示为(a1(i),b1(i),r1(i)),过点(x2,y2)的所有圆可以表示为(a2(i),b2(i),r2(i)),过点(x3,y3)的所有圆可以表示为(a3(i),b3(i),r3(i)),如果这三个点在同一个圆上,那么存在一个值(a0,b0,r0),使得 a0 = a1(k)=a2(k)=a3(k
14、) 且b0 = b1(k)=b2(k)=b3(k) 且r0 = r1(k)=r2(k)=r3(k),即这三个点同时在圆(a0,b0,r0)上。从下图可以形象的看出:首先,分析过点(x1,y1)的所有圆(a1(i),b1(i),r1(i)),当确定r1(i)时 ,(a1(i),b1(i))的轨迹是一个以(x1,y1,r1(i))为中心半径为r1(i)的圆。那么,所有圆(a1(i),b1(i),r1(i))的组成了一个以(x1,y1,0)为顶点,锥角为90度的圆锥面。三个圆锥面的交点A 既是同时过这三个点的圆。4 怎样用代码实现检测圆的过程?上面的分析虽然很简单,但是用代码实现起来就麻烦了,首先过
15、每一个点的(a(i),b(i),r(i))都有无穷多个,若是要检测的点很多,要两两比较所有的(a,b,r)值是否相等实在是一个巨大的运算量。1引言 图像最基本的特征是边缘,边缘是图像性区域和另一个属 性区域的交接处,是区域属性发生突变的地方,是图像中不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息。因此,图像的边缘提取在计算机视觉系统的初级处理中具有关键作用,但目前仍是“瓶颈”问题。 边缘检测技术对于数字图像是非常重要的,提取出边缘才能将目标和背景区分开来。现有的图像边缘提取方法可以分为三大类:一类是基于某种固定的局部运算方法,如:微分法,拟合法等,它们属于经典的边缘提
16、取方法;第二类则是以能量最小化为准则的全局提取方法,其特征是运用严格的数学方法对此问题进行分析,给出一维值代价函数作为最优提取依据,从全局最优的观点提取边缘,如松驰法,神经网络分析法等;第三类是以小波变换、数学形态学、分形理论等近年来发展起来的高新技术为代表的图像边缘提取方法,尤其是基于多尺度特性的小波变换提取图像边缘的方法是目前研究较多的课题。该文将较为详细地对各种图像边缘提取算法的原理进行阐述,对几种最常用的图像边缘提取算法给出实验结果,并进行结果对比与分析。 2经典的图像边缘提取方法 2.1微分算子法 边缘的检测可借助空域微分算子通过卷积完成,导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数!f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级公共安全行为规范计划
- 光伏电站土建施工危险点识别及管理措施
- 高校学生干部个人学历情况说明范文
- 幼儿园园长2025年节能环保工作总结及行动计划
- 妇产科护士长岗位职责管理
- 融资租赁公司不良清收处置计划
- 珠宝门店人员培训计划
- 以形助数以数解形:高中数学数形结合解题教学的深度剖析与实践
- 以平衡计分卡重塑C银行客服中心绩效体系:设计、应用与革新
- 以学案为翼助力高中数学教学腾飞-基于多校实践的深度剖析
- 电瓶车抵押给个人合同(2篇)
- 中国硫氰酸红霉素市场供需现状及投资战略研究报告
- (一模)乌鲁木齐地区2025年高三年级第一次质量英语试卷(含答案)
- GB/T 6822-2024船体防污防锈漆体系
- 社会调查研究与方法-001-国开机考复习资料
- 2024年六西格玛绿带认证考试练习题库(含答案)
- 菏泽学院社会心理学(专升本)复习题
- 实验室改造施工合同
- 2024敬老院护理经理聘任协议
- 人工智能语言与伦理学习通超星期末考试答案章节答案2024年
- 2024年部编版九年级语文上册电子课本(高清版)
评论
0/150
提交评论