正态分布抽样误差培训课件.ppt_第1页
正态分布抽样误差培训课件.ppt_第2页
正态分布抽样误差培训课件.ppt_第3页
正态分布抽样误差培训课件.ppt_第4页
正态分布抽样误差培训课件.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,第三讲 正态分布 抽样误差,2,一、正态分布及其应用,正态分布 正态分布的概念 正态曲线下面积的分布规律 标准正态分布 正态分布的应用 估计频数分布 估计参考值范围 质量控制 理论分布的基础,3,正态分布的概念,4,正态分布的概念,频数分布概念 频数集中在均数周围,左右基本对称,离均数愈近数据愈多,离均数愈远数据愈少 如果观察数不断增多,组距不断细分,直方图的边线将逐渐接近一条光滑曲线 这条曲线数学上称为正态曲线以均数为中心,两侧对称并逐渐下降,永远不与横轴相交的一条钟型曲线,5,正态分布的特性,正态分布曲线的特点 集中性 对称性 均匀变动性 曲线的位置和形状与两个参数有关,6,正态分布的

2、特性,正态分布曲线的参数 为位置参数:恒定时,增大,曲线沿横轴向右移动;减小,曲线沿横轴向左移动 为形状参数:恒定时,越大,曲线越宽,表示数据越分散;越小,曲线越窄,表示数据越集中,7,正态曲线下的面积分布图,8,当资料近似正正态分布时,可以 作为的估计值,以S作为的估计值,估计正态曲线下面积的分布规律,9,标准正态分布,标准正态分布:N( 0,1 ) 数据经标准化后,使=0,=1时的正态分布 转换方式 任何一个正态分布,都可以通过变换,成为标准正态分布,10,正态分布的应用,频数估计 估计医学正常参考值范围 质量控制 统计方法的理论基础,11,频数估计,正态分布 标准正态分布,12,估计医学

3、正常参考值范围,研究对象的选择 估计范围确定(80%、90%、95%、99%) 单双侧的确定 方法的选择 正态分布 偏态分布,13,正态分布的应用,质量控制 作为上下警戒值 作为上下控制值 统计方法的理论基础 u 检验、t 分布、F 分布、二项分布、2 分布等,14,常用u 值表,15,常用百分位数表,16,二、抽样误差及其应用,抽样误差的概念 抽样误差的应用 参数估计 假设检验,17,抽样误差的概念,抽样误差 由抽样研究引起的样本统计量与总体参数间的差异 均数的抽样误差 两种表现形式 样本统计量与总体参数间的差异 样本统计量间的差异 抽样误差产生的原因 抽样研究 个体变异,18,标准误(st

4、andard error,SE),样本统计量的标准差称为标准误,用来衡量抽样误差的大小。 标准误与个体变异 成正比,与样本含量n的平方根成反比。 标准误理论值,19,标准误(standard error,SE),实际工作中, 往往是未知的,一般可用样本标准差s代替 标准误的估计值 因为标准差s随样本含量的增加而趋于稳定,故增加样本含量可以降低抽样误差,20,t分布的概念,设某一变量Xi服从正态分布N(,),则 服从标准正态分布 即,21,t分布的概念,从正态分布N(,)的总体中随机抽样并计算多个样本均数 ,它们服从总体均数为,总体标准差为 的正态分布,则 也服从标准正态分布。,22,t分布的概

5、念,实际工作中, 由于 未知,则用 代替,则 服从t分布 t分布(t-distribution)主要用于参数估计及t检验。英国统计学家W.S.Gosset于1908年在生物统计杂志上发表该论文时用的是笔名“Student”,故t分布又称Student t分布。,23,t分布的特征,t分布为一簇单峰分布曲线 t分布以0为中心,左右对称 t分布与自由度有关,自由度越小,t分布的峰越低,而两侧尾部翘得越高;自由度逐渐增大时,t分布逐渐逼近标准正态分布;当自由度为无穷大时,t分布就是标准正态分布,24,不同自由度下的t分布,25,参数估计(parameter estimation),由样本信息估计总体

6、参数 点估计(point estimation) 区间估计(interval estimation),26,点估计,直接用样本统计量作为总体参数的估计值 方法简单,但未考虑抽样误差的大小 在实际问题中,总体参数往往是未知的,但它们是固定的值,并不是随机变量值。而样本统计量随样本的不同而不同,属随机的,27,区间估计,按一定的概率或可信度(1- )用一个区间估计总体参数所在范围,这个范围称作可信度为1- 的可信区间(confidence interval, CI),又称置信区间 。这种估计方法称为区间估计。,28,均数的可信区间,总体均数的(1- )可信区间定义为 当样本含量较大时,例如n100

7、,t分布近似标准正态分布,此时可用标准正态分布代替t分布,作为可信区间的近似计算。相应的100(1-)可信区间为,29,可信区间的确切涵义,可信度为95% 的可信区间的确切涵义是:每100个样本所算得的100个可信区间,平均有95个包含了总体参数 。,30,可信区间的两个要素,可靠性 反映为可信度1- 的大小 精确性 用区间长度CUCL衡量,31,可信区间与参考值范围的区别,可信区间用于估计总体参数,总体参数只有一个 。 参考值范围用于估计变量值的分布范围,变量值可能很多甚至无限 。 95%的可信区间中的95%是可信度,即所求可信区间包含总体参数的可信程度为95% 95%的参考值范围中的95%是一个比例,即所求参考值范围包含了95%的正常人。,32,标准差 意义:描述原始数据的离散程度。衡量均数对原始数据的代表性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论