第三章 抽样分布413.ppt_第1页
第三章 抽样分布413.ppt_第2页
第三章 抽样分布413.ppt_第3页
第三章 抽样分布413.ppt_第4页
第三章 抽样分布413.ppt_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章 抽样分布,3.1 抽样方案的设计 3.2 简单随机抽样的抽样误差,3.1 抽样方案的设计,一、抽样调查的意义和一般步骤 二、抽样方案设计的基本准则 三、抽样方案设计的主要内容,一、抽样调查的意义和一般步骤, 抽样调查的定义 抽样调查的特点 抽样调查的运用 抽样调查的一般步骤,指样本单位的抽取不受主观因素及其他系统性因素的影响,每个总体单位都有均等的被抽中机会,抽样调查,又称为抽样推断或抽样估计,是一种非全面调查,它是按照随机原则,从总体中抽取一部分单位进行调查,并根据这部分单位的资料结果对总体某一数量特征作出推断和估计的一种统计方法。,全体及总体,概念:简称总体或母体,是指所要调查认识

2、的研究对象的全体,它由具有某种共同性质或特征的单位组成。总体单位数用N表示。 分类:按其各单位标志的性质不同可分为:,指构成总体的各个单位可以用一定的数量标志加以计量的总体,指只能用品质标志来描述的总体,基本概念,样本总体,又称为抽样总体、子样,简称为样本,是指在全及总体中按随机原则抽取的那部分单位所构成的小总体。用字母n表示。 一般来讲,当n 30,称为大样本;当 n 30,称为小样本。,统计推断,全体及总体指标:参数(未知量),样本总体指标:统计量(已知量),抽样调查,按随机原则抽取样本单位 由部分推断总体 抽样推断的结果具有一定的可靠程度,抽样误差可以事先计算并控制,抽样调查的特点,经济

3、性 时效性 准确性 灵活性,抽样调查的优越性,不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时 用于工业生产过程中的产品质量控制和管理,抽样调查的应用,Tuiduan,抽 取 样 本 单 位,收 集 样 本 数 据,计 算 样 本 统 计 量,推 断 总 体 参 数,抽样调查的一般步骤, 随机原则,抽取样本单位时,应确保每个总体单位都有被抽取的可能;在对样本单位的资料进行搜集和整理时,不能随意遗漏或更换样本单位, 抽样误差最小,在其他条件相同的情况下,选抽样误差最小的方案, 费用最少,在其他条件相同的情况下,选费用最少的方案,设计抽样方案时,通常是

4、 在误差达到一定要求的条 件下,选择费用最少的方案,二、抽样方案设计的基本准则, 编制抽样框 确定抽样方法 确定抽样组织方式 确定样本容量,三、抽样方案设计的主要内容,(一)编制抽样框,处于基础地位,是抽样调查必不可少的部分,区域抽样框,在商场的大门口,在微波炉柜台前,在市区街道旁边,在某个住宅小区,开发区张店区 步行街道美食街道马尚镇一委尖山九级村委,某外国公司在淄博进行微波炉市场调查:,时间表抽样框,连续出产的产品总体可以编制抽样框:均匀的出产时间、可以预见到的产品总量。,连续到加油站加油的汽车总体无法编制抽样框:时间不定、总量也无法确定。,栏目设置不宜过多 抽选方法易于掌握 适当选择排队

5、标志与分类标志,设计要求,1、划分类型的分组标志可以是数量标志,也可以是品质标志;但排队标志必须是数量标志。 2、选择分组标志和排队标志应尽量与调查标志有高度相关关系。,(二)确定抽样方法,重复抽样,又被称作重置抽样、有放回抽样,抽出 个体,登记 特征,放回 总体,继续 抽取,特点,同一总体单位有可能被重复抽中,而且每次抽取都是独立进行,不重复抽样,又被称作不重置抽样、不放回抽样,抽出 个体,登记 特征,继续 抽取,特点,同一总体中每个单位被抽中的机会并不均等,在连续抽取时,每次抽取都不是独立进行,是最常用的抽样方法,用于无限总体和许多 有限总体样本单位的抽样。,(三)确定抽样组织方式,是最简

6、单、最基本、最符合随机原则,但同 时也是抽样误差最大的抽样组织形式,方 法,给总体各单位编号后,把号码写在结构均匀的字签上,将字签混合均匀后即可从中抽取。,先编制随机数字表,然后将总体所有单位编号,根据编号的位数,确定使用随机数字表中若干位数字,接着从表中任一行、列、方向开始数,遇到属于编号范围内的数字就作为样本单位,直到抽够样本量为止。,先将总体各单位进行编码,然后按照随机原则,用抽签法或随机数字法抽取若干数码,所有中选的数码对应的单位即构成样本。,总体 N,样本 n,能使样本结构更接近于总体结构,提高样本的代表 性;能同时推断总体指标和各子总体的指标,(1)分层比例抽样:,指分层后,按随机

7、原则根据各层中单位数量占总体单位数量的比例抽取各层的样本数量。,每层抽取的样本数计算公式为:,式 中: ni为第i层抽出的样本数 Ni为第i层的总单位数 N为总体单位数 n为总体样本数,例1:某市有各类型书店500家,其中大型50家,中型150家,小型300家。为了调查该市图书销售情况,先计划从中抽取30家书店进行调查,采用分层比例抽样法应从各层中抽取多少家书店调查? 解:根据分层比例抽样公式,则 (1)大型书店应抽取的样本数为: n大=50家/500家*30家=3家 (2)中型书店应抽取的样本数为: n中=150家/500家*30家=9家 (3)小型书店应抽取的样本数为: n小=300家/5

8、00家*30家=18家,思 考:,假定某大学的商学院想对今年的毕业生进行一次调查,以便了解他们的就业意向。该学院共有5个专业:会计、金融、市场营销、经营管理、信息系统。今年共有1500名毕业生,其中,会计专业有500名,金融专业300名,市场营销300名,经营管理250名,信息体统150名。 请 问:假定要抽取的样本数为180人,各专业按比例分别应抽取多少人?,解:根据分层比例抽样公式,则 (1)会计专业应抽取的样本数为: n会=500名/1500名*180名=60名 (2)金融专业应抽取的样本数为: n金=300名/1500名*180名=36名 (3)市场营销应抽取的样本数为: n市=300

9、名/1500名*180名=36名 (4)经营管理应抽取的样本数为: n经=250名/1500名*180名=30名,(2)分层最佳抽样:,指不仅按各层单位数占总体单位数的比例分配各层的样本数,还根据各层标准差的大小来调整各层样本数目的抽样方法。,每层抽取的样本数计算公式为:,式 中: ni为第i层抽出的样本数 Ni为第i层的总单位数 为第i层的标准差 n 为总体样本数,例 如( 2): 仍用上例资料,假设各类型书店图书销售额的标准差估计值为:大型20000元;中型8000元;小型5000元。按照最佳抽样法应从各层中抽取多少家书店进行调查?,解:根据分层最佳抽样法,则,某地共有居民20000户,按

10、经济收入高低进行分类,其中高收入的居民户为4000户,标准差为300元,;中等收入为12000户,标准差为200元;低收入为4000户,标准差为100元。 请问:若要从中抽取200户进行购买力调查,则各类型应抽取的样本数为多少?,思 考,解:(1)等比例分层抽样法 高收入:20020%=40户 中等收入: 20060%= 120户 低收入: 20020%=40户,解:(2)分层最佳抽样法 高收入:60户(40) 中等收入: 120 户(120) 低收入: 20户(40) 通过计算可以看出,采用分层最佳抽样法,高收入者家庭增加了20户,低收入家庭减少了20户,中收入不变。 因此,由于购买力同家庭

11、经济收入关系很大,因而采用分层最佳抽样方法,可以增加高收入样本数,相应减少低收入层的样本数,这样使所抽取的样本更具有代表性。,(3)最低成本抽样:,指在考虑统计效果的前提下,根据费用支出来确定各层应抽取的单位数,以节省调查费用。(经济效益),每层抽取的样本数计算公式为:,式 中: ni为第i层抽出的样本数 Ni为第i层的总单位数 为第i层的标准差 为第i层每单位的调查费用 n 为总体样本数,例 如( 3): 仍用上例资料,现假设对不同类型书店进行调查,每调查一家大型书店需要的调查费用为600元,中型书店需要500元,小型书店需要400元,其他情况不变。按照最低成本抽样法应从各层中抽取多少家书店

12、进行调查?,解:根据最低成本抽样法,则,随机起点,半距起点,对称起点,(总体单位按某一标志排序),具体操作步骤:,假设总体有N个单位,需要抽取的样本容量为n,可以将总体单位按一定标志排序编号,然后确定样本间距,每个样本的间隔均为K,则K=N/n(四舍五入取整)。最后从1至N/n之间抽取一个号作为样本,再从这个样本算起,加上样本间距K,即为第2个样本的号码,以此类推,直至整个样本抽取完为止。,例 如:,某企业对购进的10000台电视机的质量进行调查,计划抽取400台作为样本调查,总体编号为1-10000,样本间距为K=10000/400=25,然后从1-25中任意抽取一个数为样本,假定为第8台,

13、则第2个样本为8+25=33,即抽取第33台作为第2个样本,以此类推,一直抽够400台为止。,系统抽样的优缺点,优 点: (1)简便易行,容易确定样本单元 (2)分布比较均匀,有利于提高估计精度 例 如:对公路旁树木进行病虫害防治,确定每30棵树检查1棵,只要确定了起点的被检查树,每隔30棵检查1棵即可。 缺 点:若存在周期性变化,代表性差,例:总体群数R=16 样本群数r=4,样本容量,简单、方便,易于组织,能节省人力、物力、财力 和时间,但其限制了样本在总体中分配的均匀性。,(1)总体和样本都是由“群”组成; (2)引起的抽样误差的方差是群间方差,群内方差不影响抽样误差; (3)整群抽样均为不重复抽样,可提高样本的代表性。,特 点,调查对象的性质特点 对调查对象的了解程度(抽样框的特点) 抽样误差的大小 人力、财力和物力等条件的限制,在实际工作中,选择适当的抽样组织方式主要应考虑:,应注意的问题:,(四)确定样本容量,n30,为大样本;n 30,为小样本,一、抽样误差的概念 二、抽样极限误差,3.2 简单随机抽样的抽样误差,原因,影响抽样误差的因素,总体各单位的差异程度(即标准差的大小): 越大,抽样误差越大; 样本单位数的多少: 越大,抽样误差越小; 抽样方法:不重复抽样的抽样误差比重复抽样的抽样误差小; 抽样组织方式:简单随机抽样的误差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论