复数四则运算_第1页
复数四则运算_第2页
复数四则运算_第3页
复数四则运算_第4页
复数四则运算_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、复数的概念,i-虚单位 满足:i2=-1,虚部,实部,两复数相等当且仅当它们的实部和虚部分别相等.,复数 z 等于0当且仅当它的实部和虚部同时等于0.,说明 两个数如果都是实数,可以比较它们的大小, 如果不全是实数, 就不能比较大小, 也就是说,.,设:z1=x1+iy1 z2=x2+iy2,复数不能比较大小!,2、复平面,复数的向量表示法,复数 与 平面向量(a,b) 或 点 Z(a,b)一一对应,复数的几何意义,每一个复数,有复平面内唯一的一个点和它对应 复平面内的每一个点,有唯一的复数和它对应,复数的加法与减法,设Z1=a+bi,Z2=c+di (a、b、c、dR)是任意两个复数,那么它

2、们的和:,(a+bi)+(c+di)=(a+c)+(b+d)i,点评(1)复数的加法运算法则是一种规定。当b=0,d=0时与实数加法法则保持一致,(2)很明显,两个复数的和仍 然是一个复数。对于复数的加法可以推广到多个复数相加的情形。,1、复数的加法法则:,练习:计算 (1)(i)+(-3+7i)= (2)-4+(-2+6i)+(-1-0.9i)= (3)已知Z1=a+bi,Z2=c+di,若Z1+Z2是纯虚数,则有() A.a-c=0且b-d0 B. a-c=0且b+d0 C. a+c=0且b-d0 D.a+c=0且b+d0,证:设Z1=a1+b1i,Z2=a2+b2i,Z3=a3+b3i

3、(a1,a2,a3,b1,b2,b3R),则Z1+Z2=(a1+a2)+(b1+b2)i,Z2+Z1=(a2+a1)+(b2+b1)i,显然 Z1+Z2=Z2+Z1,同理可得 (Z1+Z2)+Z3=Z1+(Z2+Z3),点评:实数加法运算的交换律、结合律在复数集C中依然成立。,运算律,探究?,复数的加法满足交换律,结合律吗?,y,设 及 分别与复数 及复数 对应,则,探究?复数与复平面内的向量有一一的对应关系。我们讨论过向量加法的几何意义,你能由此出发讨论复数加法的几何意义吗?,复数的加法可按照向量的加法来进行,这就是复数加法的几何意义,思考?,复数是否有减法?,两个复数相减就是把实部与实部、

4、虚部与虚部分别相减。,设Z1=a+bi,Z2=c+di (a、b、c、dR)是任 意两个复数,那么它们的差:,学 以 致 用,讲解例题,例1 计算,解:,类比复数加法的几何意义,请指出复数减法的几何意义?,设 及 分别与复数 及复数 对应,则 ,复数减法的几何意义:,结论:,两个复数的加减法运算与相应的向量的加减法运算一致.,例: 设z1= x+2i,z2= 3-yi(x,yR),且z1+z2 = 5 - 6i, 求z1-z2,解:z1=x+2i,z2=3-yi,z1+z2=5-6i,(3+x)+(2-y)i=5-6i,z1 - z2 = (2+2i) - (3-8i) = -1+10i,三、

5、课堂练习,1、计算:(1)( 3 4i)+(2+i) (1 5i)=_ (2) ( 3 2i) (2+i) (_)=1+6i,2、已知xR,y为纯虚数,且(2x 1)+i=y (3 y)i 则x=_ y=_,2+2i,9i,4i,分析:依题意设y=ai(aR),则原式变为: (2x 1)+i=(a 3)i +ai2= a+( a 3)i,3、复平面内关于原点对称的两点对应的复数为Z1,Z2,且满足Z1+i=Z2 2,求Z1和Z2。,分析:依题意设Z1=x+yi(x,yR)则Z2= x yi,由Z1+i=Z2 2得:x+(y+1)i= (x 2)+(y)i,由复数相等可求得x= 1,y= 1/2

6、,复数的乘法法则:,(a+bi)(c+di)=ac+bci+adi+bdi2 =(ac-bd)+(bc+ad)i,显然任意两个复数的积仍是一个复数.,对于任意z1,z2,z3 C,有,z1z2= z2z1 , z1z2 z3= z1(z2 z3) , z1(z2 +z3)= z1z2 +z1z3 .,例 1 计算 (1-2i)(3+4i)(-2+i),解:(1-2i)(3+4i)(-2+i),对于任意复数z=a+bi ,有,(a+bi)(a-bi)=a2+b2,=(11-2i)(-2+i),=-20+15i .,例 2 计算,解,二、复数除法的法则,复数的除法是乘法的逆运算,满足,(c+di)

7、(x+yi)=(a+bi) (c+di0)的复数 x+yi , 叫做复数a+bi除以复数c+di的商,,例3 计算:,(1) (1+2i)(3-4i),(2) (3+2i) (2-3i),=i,共轭复数:,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.虚部不为0的共轭复数也叫共轭虚数.,思考:,若 是共轭复数,那么 在复平面内,它们所对应的点有怎样的位置关系? 是一个怎样的数?,关于共轭复数的运算性质,z1 , z2 C , 则,在乘除法运算中关于复数模的性质,已知 z1 , z2 C , 求证:,| z1 z2 |=| z1 | | z2 | ,,设z1=a+bi , z2=c+di (a,b,c,d ) ,则,| z1z2 |=|(ac-bd)+(bc+ad)i|,= | z1 | | z2 |,证明:,i的乘方规律,从而对任意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论