




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、7.相关性,.,思考: 在学校里,老师经常对学生说”如果你的数学成绩好,那么你的物理成绩就没有什么大问题.” 按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一定的相关关系.这种说法有根据吗?,相关关系两个变量的关系可能是确定的也可能是不确定的,当自变量取值一定,因变量的取值带有一定的随机性时,两个变量之间的关系称为相关关系.(非确定性关系) 函数关系-函数关系指的是自变量和因变量之间的关系是相互唯一确定的.,探究下面变量间的关系:,1.球的体积与该球的半径; 2.粮食的产量与施肥量; 3.小麦的亩产量与光照; 4.匀速行驶车辆的行驶距离与时间; 5.角与它的正切值,探究:,.,年龄,脂肪
2、,23,9.5,27,17.8,39,21.2,41,25.9,45,49,27.5,26.3,50,28.2,53,29.6,54,30.2,56,31.4,57,30.8,年龄,脂肪,58,33.5,60,35.2,61,34.6,如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?,从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加”这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、表,对这两个变量有一个直观上的印象和判断.,下面我们以年龄为横轴, 脂肪含量为纵轴建立直 角坐标系,作出各个点,
3、 称该图为散点图。,如图:,O,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,5,10,15,20,25,30,35,40,从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。但有的两个变量的相关,如下图所示:,如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.,O,我们再观察它的图像发现这些点大致分布在一条直线附 近,像这样,如果散点图中点的分布从整体上看大
4、致在一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线叫做回归直线,该直线方程叫回归直线的方程(简称回归方程)。,那么,我们该怎样来求出这个回归方程? 请同学们展开讨论,能得出哪些具体的方案?,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,.,.方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的 和最小时,测出它的斜率和截距,得回归 方程。,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,如图 :,.
5、,方案2、在图中选两点作直线,使直线两侧 的点的个数基本相同。,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,方案3、如果多取几对点,确定多条直线,再求出 这些直线的斜率和截距的平均值作为回归 直线的斜率和截距。而得回归方程。 如图,我们还可以找到 更多的方法,但 这些方法都可行 吗?科学吗? 准确吗?怎样的 方法是最好的?,20,25,30,35,40,45,50,55,60,65,年龄,脂肪含量,0,5,10,15,20,25,30,35,40,我们把由一个变量的变化 去推测另一个变量的方法 称为回归方法。,我们上面给出的几种方案可靠性都不是很强,人们经过长期的实践与研究,已经找到了计算回归方程的斜率与截距的一般公式:,以上公式的推导较复杂,故不作推导,但它的原理较为简单:即各点到该直线的距离的平方和最小,这一方法叫最小二乘法。(参看如书P80),例1.已知两个变量x和y具有线性相关关系,且5次试验的观测数据如下: 那么变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年知识产权公需科目继续教育试卷答案
- 中小学教学课件高级
- 2025年社区工作者考试真题库附答案
- 小学生校园行为规范课件
- 小学生校园心理健康课件
- 2025夏季防台风暴雨雷暴高温应急预案(参考模板)
- 卢沟谣课件背景介绍
- 小学生普法知识课件
- 小班健康活动《蔬菜香香》教案设计
- 大班健康安全用药
- 专业技术职务聘任表(2017年版)
- GB/T 602-2002化学试剂杂质测定用标准溶液的制备
- GB/T 28789-2012视频交通事件检测器
- GB/T 12706.1-2020额定电压1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)挤包绝缘电力电缆及附件第1部分:额定电压1 kV(Um=1.2 kV)和3 kV(Um=3.6 kV)电缆
- 新版有创血压监测ABP培训课件
- 重症医学科常用知情告知书
- 防溺水、防性侵、防欺凌安全教育家长会
- DB11-T1322-14-2017安全生产等级评定技术规范第14部分:汽车制造企业
- 养老机构安全检查表
- 企业员工上下班交通安全培训(简详共2份)
- 小区物业服务收支情况公示
评论
0/150
提交评论