




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、将Y 式中“.”换成“+”,“+”换成“.” “0”换成“1”,“1”换成“0” 原变量换成反变量,反变量换成原变量,1.4 逻辑代数的基本定理,1.4.1 代入定理:,等式中某一变量都代之以一个逻辑函数,则等式仍然成立。,例如,已知,(用函数 A + C 代替 A),则,1.4.2 反演定理:,不属于单个变量上的反号应保留不变,例如:已知,反演规则的应用:求逻辑函数的反函数,则,将 Y 式中“.”换成“+”,“+”换成“.” “0”换成“1”,“1”换成“0” 原变量换成反变量,反变量换成原变量,已知,则,1.4.3 对偶定理:,如果两个表达式相等,则它们的对偶式也一定相等。,将 Y 中“.
2、 ”换成“+”,“+”换成“.” “0” 换成“1”,“1”换成“0”,例如,对偶规则的应用:证明等式成立,0 0 = 0,1 + 1 = 1,1.5.1 逻辑函数,逻辑:,事物因果关系的规律,逻辑函数: 逻辑自变量和逻辑结果的关系,逻辑变量取值:0、1 分别代表两种对立的状态,高电平,低电平,真,假,是,非,有,无,1,0,0,1,1.5 逻辑函数及其表示方法,1. 5. 2 逻辑函数的表示方法,一、逻辑表达式,优点:,书写简洁方便,易用公式和定理进行运算、变换。,缺点:,逻辑函数较复杂时,难以直接从变量取值看出函数的值。,二、真值表,优点:,直观明了,便于将实际逻 辑问题抽象成数学表达式。
3、,缺点:,难以用公式和定理进行运 算和变换;变量较多时,列函数真值表较繁琐。,三、卡诺图,1,1,1,1,0,0,0,0,优点:,便于求出逻辑函数的最简与或表达式。,缺点:,只适于表示和化简变量个数比较少的逻辑函数,也不便于进行运算和变换。,四、逻辑图,A,B,Y,C,优点:,最接近实际电路。,缺点:,不能进行运算和变换,所表示的逻辑关系不直观。,五、波形图,输入变量和对应的输出变量随时间变化的波形,A,B,Y,优点:,形象直观地表示了变量取值与函数值在时间上 的对应关系。,缺点:,难以用公式和定理进行运算和变换,当变量个 数增多时,画图较麻烦。,六 、 几种表示方法之间的转换,1. 真值表,
4、函数式,逻辑图,例 设计一个举重裁判电路。在一名主裁判(A) 和两名副裁判 (B、C) 中,必须有两人以上(必有主裁判)认定运动员的动作合格,试 举才算成功。,(1) 真值表,函数式,将真值表中使逻辑函数 Y = 1 的 输入变量取值组合所对应的最小项相加,即得 Y 的逻辑函数式。,(2) 函数式,逻辑图,A,B,Y,C,真值表,函数式,2. 逻辑图,一、标准与或表达式,1. 6 逻辑函数的公式化简法,1. 6. 1 逻辑函数的标准与或式和最简式,标准与或式,标准与或式就是最小项之和的形式,1. 最小项的概念:,包括所有变量的乘积项,每个变量均以原变量或 反变量的形式出现一次。,( 2 变量共
5、有 4 个最小项),( 4 变量共有 16 个最小项),( n 变量共有 2n 个最小项),( 3 变量共有 8 个最小项),对应规律:1 原变量 0 反变量,2. 最小项的性质:,(1) 任一最小项,只有一组对应变量取值使其值为 1 ;,A B C 0 0 1,A B C 1 0 1,(2) 任意两个最小项的乘积为 0 ;,(3) 全体最小项之和为 1 。,3. 最小项的编号:,把与最小项对应的变量取值当成二进制数,与之 相应的十进制数,就是该最小项的编号,用 mi 表示。,对应规律:原变量 1 反变量 0,0 0 0,0 0 1,0 1 0,0 1 1,1 0 0,1 0 1,1 1 0,1 1 1,0,1,2,3,4,5,6,7,m0,m1,m2,m3,m4,m5,m6,m7,4. 最小项是组成逻辑函数的基本单元,任何逻辑函数都是由其变量的若干个最小项构成,都可以表示成为最小项之和的形式。,例 写出下列函数的标准与或式:,解,或,m6,m7,m1,m3,例 写出下列函数的标准与或式:,m7,m6,m5,m4,m1,m0,m8,m0,与前面m0相重,最简或与式,最简与或非式,二、逻辑函数的最简表达式及相互转换,最简与或式,最简 与非-与非式,最简或与非式,最简或非-或非式,最简或非-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 疫情后线下演出市场复苏2025年数字音乐剧发展趋势报告
- 口才课件教学课件
- 住宅装饰装修管理办法
- 产品严控品质管理办法
- 临沂维修基金管理办法
- 人才集团投资管理办法
- 信息安全工作管理办法
- 中资机构客户管理办法
- 2025网络文学海外市场布局:跨文化传播与本土化战略报告
- 二类精神药品管理办法
- 2025至2030中国电茶炉行业市场发展现状及竞争格局与投资发展报告
- 八年级上册语文必背课文资料合集
- 药品装卸安全管理制度
- 针灸医学的历史回顾之古代名医的针灸先例
- PC桩抗弯检测标准
- 脑梗塞急救流程与公共卫生策略
- 疼痛管理护理试题及答案
- 软式内镜清洗消毒技术规范2025
- 2025安徽蚌埠市城市投资控股集团有限公司所属公司社会招聘11人笔试参考题库附带答案详解
- 人行雨棚施工方案
- 刑事和解协议书自诉
评论
0/150
提交评论