版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、平面图形的面积,三、体积,6.2 定积分在几何学上的应用,四、平面曲线的弧长,一、元素法,回顾,曲边梯形求面积的问题,一、元素法,面积表示为定积分的步骤如下,(3) 求和,得A的近似值,(4) 求极限,得A的精确值,提示,微元法的一般步骤:,这个方法通常叫做元素法,应用方向:,平面图形的面积;体积;平面曲线的弧长;功;水压力;引力和平均值等,f上(x) f下(x)dx, 它也就是面积元素.,二、平面图形的面积,设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成.,因此平面图形的面积为,在点x处面积增量的近似值为,1.直角坐标情形,讨论: 由左右两条曲线xj左(
2、y)与xj右(y)及上下两条直线yd与yc所围成的平面图形的面积如何表示为定积分?,提示:,面积为,面积元素为j右(y)j左(y)dy,例1 计算抛物线y2x与yx2所围成的图形的面积.,解,(2)确定在x轴上的投影区间:,(4)计算积分,0, 1;,(1)画图;,例2 计算抛物线y22x与直线yx4所围成的图形的面积.,(2)确定在y轴上的投影区间:,(4)计算积分,(3)确定左右曲线:,-2, 4.,解,(1)画图;,例3,因为椭圆的参数方程为 xacost, ybsint,所以,解,椭圆的面积是椭圆在第一象限部分的四倍.,于是,ydx,椭圆在第一象限部分的面积元素为,曲边扇形,曲边扇形的
3、面积元素,曲边扇形是由曲线()及射线, 所围成的图形.,曲边扇形的面积,2.极坐标情形,例4 计算阿基米德螺线a (a0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积.,解,例5 计算心形线a(1cos)(a0)所 围成的图形的面积.,解,曲边扇形的面积:,三、体积,旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴.,1.旋转体的体积,旋转体都可以看作是由连续曲线yf(x)、直线xa、ab及x轴所围成的曲边梯形绕x轴旋转一周而成的立体.,1.旋转体的体积,旋转体的体积元素 考虑旋转体内点x处垂直于x轴的厚度为dx的切片,用圆柱体的体积f(x)2dx作为切
4、片体积的近似值,旋转体的体积,于是体积元素为 dVf(x)2dx.,例6 连接坐标原点O及点P(h, r)的直线、直线xh及x轴围成一个直角三角形. 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体. 计算这圆锥体的体积.,旋转体的体积:,解,解,轴围成的图形绕x轴旋转而成的立体.,旋转椭球体的体积为,旋转体的体积:,设立体在x轴上的投影区间为a, b, 立体内垂直于x轴的截面面积为A(x).,立体的体积元素为,立体的体积为,2.平行截面面积为已知的立体的体积,A(x)dx.,截面面积为A(x)的立体体积:,例9 一平面经过半径为R的圆柱体的底圆中心, 并与底面交成角. 计算这平面截圆柱所得立
5、体的体积.,建立坐标系如图, 则底圆的方程为x2y2R2.,所求立体的体积为,解,立体中过点x且垂直于x轴的截面为直角三角形, 其面积为,四、平面曲线的弧长,设曲线弧由直角坐标方程 yf(x) (axb) 给出, 其中f(x)在区间a, b上具有一阶连续导数. 现在来计算这曲线弧的长度.,在曲率一节中, 我们已经知道弧微分的表达式为,这也就是弧长元素.,因此, 曲线弧的长度为,直角坐标情形,因此, 所求弧长为,解,曲线yf(x)(axb)的弧长:,设曲线弧由参数方程x(t)、y(t)(t)给出, 其中(t)、(t)在, 上具有连续导数.,于是曲线弧的长为,曲线yf(x)(axb)的弧长:,参数方程情形,曲线x(t)、y(t)(t)的弧长:,例12 求摆线xa(qsinq), ya(1cosq)的一拱(02 )的长度.,解,于是所求弧长为,曲线yf(x)(axb)的弧长:,弧长元素为,微元法的提出、思想、步骤.,(注意微元法的本质),求在直角坐标系下、参数方程形式下、极坐标系下平面图形的面积.,(注意恰当的选择积分变量有助于简化积分运算),五、小结,旋转体的体积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026新疆阿合奇县公益性岗位(乡村振兴专干)招聘44人考试参考试题及答案解析
- 2026浙江大学医学院附属第一医院台州医院(筹)招聘高层次卫技人员150人考试参考试题及答案解析
- 2026贵州峰鑫建设投资(集团)有限公司招聘14人考试参考题库及答案解析
- 2026年安徽电子信息职业技术学院单招综合素质笔试备考题库带答案解析
- 2026浙江省应急管理科学研究院编外招聘10人考试备考试题及答案解析
- 2026安徽省面向华东师范大学选调生招录考试备考试题及答案解析
- 2026江西省某国企招聘劳务派遣工程师4人考试参考试题及答案解析
- 2026年山东管理学院招聘工作人员考试参考题库及答案解析
- 2026湖北省面向中央民族大学普通选调生招录考试备考试题及答案解析
- 2026年度江西铜业鑫瑞科技有限公司第二批次校园招聘3人笔试备考试题及答案解析
- 器官移植术后排斥反应的风险分层管理
- 事业单位清算及财务报告编写范本
- 护坡绿化劳务合同范本
- 临床绩效的DRG与CMI双指标调控
- 2026年湛江日报社公开招聘事业编制工作人员备考题库及完整答案详解
- 2025-2026学年人教版数学三年级上学期期末仿真模拟试卷一(含答案)
- 2025年凉山教师业务素质测试题及答案
- 2026年昭通市威信县公安局第一季度辅警招聘(14人)笔试模拟试题及答案解析
- 氢能技术研发协议
- 2025交管12123学法减分整套试题带答案解析(全国适用)
- 经皮内镜下胃造瘘术护理配合
评论
0/150
提交评论