传感器4-7.ppt_第1页
传感器4-7.ppt_第2页
传感器4-7.ppt_第3页
传感器4-7.ppt_第4页
传感器4-7.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、4.7 磁电式传感器,1磁电感应式传感器 磁电感应式传感器又称磁电式传感器, 是利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号的一种传感器。 它不需要辅助电源就能把被测对象的机械量转换成易于测量的电信号, 是有源传感器。由于它输出功率大且性能稳定, 具有一定的工作带宽(101000 Hz), 所以得到普遍应用。,一、 磁电感应式传感器工作原理 根据电磁感应定律, 当N匝线圈在恒定磁场内运动时, 设穿过线圈的磁通为, 则线圈内的感应电势E与磁通变化率d/dt有如下关系: E-N (7 - 1) 根据这一原理, 可以设计成两种磁电传感器结构: 变磁通式和恒磁通式。 1变磁通式 变磁通

2、式传感器又称为变磁阻磁电感应式传感器或变气隙磁电感应式传感器 图7 - 1是变磁通式磁电传感器, 用来测量旋转物体的角速度。,图7 - 1(a)为开磁路变磁通式: 线圈、 磁铁静止不动, 测量齿轮安装在被测旋转体上, 随之一起转动。每转动一个齿, 齿的凹凸引起磁路磁阻变化一次, 磁通也就变化一次, 线圈中产生感应电势,其变化频率等于被测转速与测量齿轮齿数的乘积。这种传感器结构简单, 但输出信号较小, 且因高速轴上加装齿轮较危险而不宜测量高转速。 ,图438(b)为闭磁路变磁通式结构示意图,被测旋转体1带动椭圆形测量轮2在磁场气隙中等速转动,使气隙平均长度周期性地变化,因而磁路磁阻也周期性地变化

3、,磁通同样周期性地变化,则在线圈3中产生感应电动势,其频率与测量轮的转速成正比。,图7 - 1(b)为闭磁路变磁通式, 它由装在转轴上的内齿轮和外齿轮、永久磁铁和感应线圈组成,软铁制成内齿轮形式,内外齿轮齿数相同。 当转轴连接到被测转轴上时, 外齿轮不动, 内齿轮随被测轴而转动, 内、外齿轮的相对转动使气隙磁阻产生周期性变化, 从而引起磁路中磁通的变化,使线圈内产生周期性变化的感生电动势。显然,感应电势的频率与被测转速成正比。,变磁通式传感器对环境条件要求不高,能在15090的温度下工作,不影响测量精度,也能在油、水雾、灰尘等条件下工作。但它的工作频率下限较高,约为50Hz,上限可达100kH

4、z。,图 7 - 2 为恒磁通式磁电传感器典型结构, 它由永久磁铁、线圈、弹簧、金属骨架等组成。 磁路系统产生恒定的直流磁场, 磁路中的工作气隙固定不变, 因而气隙中磁通也是恒定不变的。其运动部件可以是线圈(动圈式), 也可以是磁铁(动铁式), 动圈式(图7 - 2(a)和动铁式(图7 - 2(b))的工作原理是完全相同的。 当壳体随被测振动体一起振动时, 由于弹簧较软, 运动部件质量相对较大。当振动频率足够高(远大于传感器固有频率)时, 运动部件惯性很大, 来不及随振动体一起振动, 近乎静止不动, 振动能量几乎全被弹簧吸收, 永久磁铁与线圈之间的相对运动速度接近于振动体振动速度, 磁铁与线圈

5、的相对运动切割磁力线, 从而产生感应电势为,2恒磁通式,E=-B0LNv (7 - 2) 式中: B0 工作气隙磁感应强度; L每匝线圈平均长度; N线圈在工作气隙磁场中的匝数; v相对运动速度。,由上式可知,当传感器结构参数确定后,B0、L、N均为定值,因此感应电动势E与线圈相对磁场的运动速度成正比。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传感器的灵敏度(E)随振动频率而变化;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。,恒磁通磁电式传感器的频响范围一般为几十赫兹至几百赫兹

6、,低的可到10Hz左右,高的可达2kHz左右。 由以上分析可知,磁电式传感器只适用于动态测量,可直接测量振动物体的速度或旋转体的角速度。如果在其测量电路中接入积分电路或微分电路,那么还可以用来测量位移或加速度。,二、 磁电感应式传感器基本特性 当测量电路接入磁电传感器电路中, 磁电传感器的输出电流I0为 I0= (7 - 3) 式中: Rf测量电路输入电阻; R 线圈等效电阻。,传感器的电流灵敏度为 SI= (7 - 4) 而传感器的输出电压和电压灵敏度分别为 (7 - 5) (7 - 6) 当传感器的工作温度发生变化或受到外界磁场干扰、 机械振动或冲击时, 其灵敏度将发生变化而产生测量误差。

7、 相对误差为,1. 非线性误差 磁电式传感器产生非线性误差的主要原因是: 由于传感器线圈内有电流I流过时, 将产生一定的交变磁通I, 此交变磁通叠加在永久磁铁所产生的工作磁通上, 使恒定的气隙磁通变化如图7 - 3所示。 当传感器线圈相对于永久磁铁磁场的运动速度增大时, 将产生较大的感生电势E和较大的电流I, 由此而产生的附加磁场方向与原工作磁场方向相反, 减弱了工作磁场的作用, 从而使得传感器的灵敏度随着被测速度的增大而降低。,(7-7),当线圈的运动速度与图7 - 3所示方向相反时, 感生电势E、 线圈感应电流反向, 所产生的附加磁场方向与工作磁场同向, 从而增大了传感器的灵敏度。其结果是

8、线圈运动速度方向不同时, 传感器的灵敏度具有不同的数值, 使传感器输出基波能量降低, 谐波能量增加。即这种非线性特性同时伴随着传感器输出的谐波失真。显然,传感器灵敏度越高, 线圈中电流越大, 这种非线性越严重。 为补偿上述附加磁场干扰, 可在传感器中加入补偿线圈, 如图7 - 2(a)所示。 补偿线圈通以经放大K倍的电流, 适当选择补偿线圈参数, 可使其产生的交变磁通与传感线圈本身所产生的交变磁通互相抵消, 从而达到补偿的目的。,2. 温度误差 当温度变化时, 式(7 -7)中右边三项都不为零, 对铜线而言每摄氏度变化量为dL/L0.16710-4, dR/R0.4310-2 , dB/B每摄

9、氏度的变化量取决于永久磁铁的磁性材料。对铝镍钴永久磁合金, dB/B-0.0210-2, 这样由式(7 - 7)可得近似值: t(-4.5%)/10 (7 - 8) 这一数值是很可观的, 所以需要进行温度补偿。 补偿通常采用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁性材料做成。它在正常工作温度下已将空气隙磁通分路掉一小部分。当温度升高时, 热磁分流器的磁导率显著下降, 经它分流掉的磁通占总磁通的比例较正常工作温度下显著降低, 从而保持空气隙的工作磁通不随温度变化, 维持传感器灵敏度为常数。 ,三、 磁电感应式传感器的测量电路 磁电式传感器直接输出感应电势, 且传感器通常具有较高的灵敏度

10、, 所以一般不需要高增益放大器。但磁电式传感器是速度传感器, 若要获取被测位移或加速度信号, 则需要配用积分或微分电路。 图 7 - 4 为一般测量电路方框图,四、 磁电感应式传感器的应用 1. 动圈式振动速度传感器 图 是动圈式振动速度传感器结构示意图。 其结构主要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳相连。,工作时, 传感器与被测物体连接, 当物体振动时, 传感器外壳和永久磁铁随之振动, 而架空的芯轴、线圈和阻尼环因惯性而不随之振动。 因而, 磁路空气隙中的线圈

11、切割磁力线而产生正比于振动速度的感应电动势, 线圈的输出通过引线输出到测量电路。 该传感器测量的是振动速度参数, 若在测量电路中接入积分电路, 则输出电势与位移成正比; 若在测量电路中接入微分电路, 则其输出与加速度成正比。,2. 磁电式扭矩传感器 图 7 - 6 是磁电式扭矩传感器的工作原理图。 在驱动源和负载之间的扭转轴的两侧安装有齿形圆盘, 它们旁边装有相应的两个磁电传感器。磁电传感器的结构见图7 - 5所示。 传感器的检测元件部分由永久磁场、感应线圈和铁芯组成。 永久磁铁产生的磁力线与齿形圆盘交链。当齿形圆盘旋转时, 圆盘齿凸凹引起磁路气隙的变化, 于是磁通量也发生变化, 在线圈中感应出交流电压, 其频率等于圆盘上齿数与转数乘积。,图75磁电式扭矩传感器工作原理图 (a) 主视图;(b)AA视图 1定子;2转子,测量扭矩时,需用两个传感器。将这两个传感器的转轴(包括线圈和转子)分别固定在被测轴的两端,其外壳固定不动。安装时,一个传感器的定子齿与其转子齿相对;另一个传感器定子槽与其转子齿相对。当被测轴无外加扭矩时,扭转角为零。这时若转轴以一定角速度旋转,则两传感器产生相位差180近似正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论