




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章 圆3.1 车轮为什么做成圆形学习目标:经历形成圆的概念的过程,经历探索点与圆位置关系的过程;理解圆的概念,理解点与圆的位置关系学习重点:圆及其有关概念,点与圆的位置关系学习难点:用集合的观念描述圆学习方法:指导探索法.学习过程:一、例题讲解:【例1】如图,RtABC的两条直角边BC=3,AC=4,斜边AB上的高为CD,若以C为圆心,分别以r1=2cm,r2=24cm,r3=3cm为半径作圆,试判断D点与这三个圆的位置关系【例2】如何在操场上画出一个很大的圆?说一说你的方法【例3】 已知:如图,OA、OB、OC是O的三条半径,AOC=BOC,M、N分别为OA、OB的中点求证:MC=NC【
2、例4】 设O的半径为2,点P到圆心的距离OP=m,且m使关于x的方程2x22xm1=0有实数根,试确定点P的位置【例5】 城市规划建设中,某超市需要拆迁爆破时,导火索的燃烧速度与每秒09厘米,点导火索的人需要跑到离爆破点120米以外的安全区域,这个导火索的长度为18厘米,那么点导火索的人每秒跑65米是否安全?二、随堂练习1已知圆的半径等于5cm,根据下列点P到圆心的距离:(1)4cm;(2)5cm;(3)6cm,判定点P与圆的位置关系,并说明理由2点A在以O为圆心,3cm为半径的O内,则点A到圆心O的距离d的范围是三、课后练习 作业: 小结:教后记:3.2 圆的对称性(第一课时)学习目标:经历
3、探索圆的对称性及相关性质的过程理解圆的对称性及相关知识理解并掌握垂径定理学习重点:垂径定理及其应用学习难点:垂径定理及其应用学习方法:指导探索与自主探索相结合。学习过程:一、举例:【例1】判断正误:(1)直径是圆的对称轴(2)平分弦的直径垂直于弦【例2】若O的半径为5,弦AB长为8,求拱高【例3】如图,O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,CEA=30,求CD的长【例4】如图,在O中,弦AB=8cm,OCAB于C,OC=3cm,求O的半径长二、练习:课后练习: 作业: 小结:教后记:3.2 圆的对称性(第二课时)学习目标:圆的旋转不变性,圆心角、弧、弦之间相等关系定理
4、学习重点:圆心角、弧、弦之间关系定理学习难点:“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明学习方法:指导探索法.学习过程: 一、例题讲解:【例1】已知A,B是O上的两点,AOB=1200,C是 的中点,试确定四边形OACB的形状,并说明理由.【例2】如图,AB、CD、EF都是O的直径,且1=2=3,弦AC、EB、DF是否相等?为什么?【例3】如图,弦DC、FE的延长线交于O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件: ,使1=2二、课内练习:课后练习: 作业: 小结:教后记:心角的关系(第一课时)学习目标:(1)理解圆周角的概念,掌握圆周角
5、的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法学习重点:圆周角的概念和圆周角定理学习难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想学习方法:指导探索法.学习过程:一、举例:1、已知O中的弦AB长等于半径,求弦AB所对的圆周角和圆心角的度数2、如图,OA、OB、OC都是圆O的半径,AOB=2BOC求证:ACB=2BAC3、如图,已知圆心角AOB=100,求圆周角ACB、ADB的度数?4、一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?5、已知AB为O的直径,A
6、C和AD为弦,AB=2,AC=,AD=1,求CAD的度数课后练习: 作业: 小结:教后记:3.3 圆周角和圆心角的关系(第二课时)学习目标:掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.学习重点:圆周角定理几个推论的应用.学习难点:理解几个推论的”题设”和”结论”学习方法:指导探索法.学习过程:一、举例:【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?【例2】如图,已知O中,AB为直径,AB=10cm,弦AC=6cm,ACB的平分线交O于D,求BC、AD和BD的长【例3】如图所示,已知AB为O的直径,AC为弦,ODBC,
7、交AC于D,BC=4cm(1)求证:ACOD;(2)求OD的长;(3)若2sinA1=0,求O的直径【例4】四边形ABCD中,ABDC,BC=b,AB=AC=AD=a,如图3-3-15,求BD的长二、练习:课后练习: 作业: 小结:教后记:3.4 确定圆的条件学习目标:通过经历不在同一直线上的三个点确定一个圆的探索,了解不在同一直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心,圆的内接三角形的概念,进一步体会解决数学问题的策略学习重点:1定理:不在同一直线上的三个点确定一个圆定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有
8、” 2通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形只要三角形确定,那么它的外心和外接圆半径也随之确定了学习难点:分析作圆的方法,实质是设法找圆心过已知点作圆的问题,就是对圆心和半径的探讨学习方法:教师指导学生自主探索交流法.学习过程:一、举例:【例1】 下面四个命题中真命题的个数是( )经过三点一定可以做圆;任意一个三角形一定有一个外接圆,而且只有一个外接圆;任意一个圆一定有一个内接三角形,而且只有一个内接三角形;三角形的外心到三角形三个顶点的距离相等A4个B3个C2个D1个【例2】 在ABC中,BC=24cm,外心O到BC的距离为6cm,求A
9、BC的外接圆半径【例3】 如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由【例4】 阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆练习: 作业: 小结:教后记:3.5 直线和圆的位置关系(第一课时)学习目标:经历探索直线和圆位置关系的过程,理解直线与圆有相交、相切、相离三种位置关系,了解切线的概念,探索切线与过切点的直径之间的关系。学习重点:直线和圆的三种位置关系,切线的概念和性质学习难点:探索切线的性质学习方法:教师指导学生探索法.学习过程:一、 举例:【例1】在RtABC中,C
10、=90,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?(1)r=2cm;(2)r=24cm(3)r=3cm【例2】已知:如图,ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,若FDE=70,求A的度数【例3】小红家的锅盖坏了,为了配一个锅盖,需要测量锅的直径(铅沿所形成的圆的直径),而小红家只有一把长20cm的直尺,根本不够长,怎么办呢?小红想了想,采取了以下办法:如图,首先把锅平放到墙根,锅沿刚好靠到两墙,用直尺紧贴墙面量得MA的长,即可求出锅的直径请你利用图说明她这样做的理由【例4】如图3-5-9,已知,求作:(1)确定的圆心;(2)过点A且与O相切
11、的直线(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)【例5】 东海某小岛上有一灯塔A,已知A塔附近方圆25海里范围内有暗礁,我110舰在O点处测得A塔在其北偏西60方向,向正西方向航行20海里到达B处,测得A在其西北方向如果该舰继续航行,是否有触礁的危险?请说明理由(提示=1414,=1732)二、课内练习:课后练习: 作业: 小结:教后记:3.5 直线和圆的位置关系(第二课时)学习目标:能判定一条直线是否为圆的切线,会过圆上一点画圆的切线,会作三角形的内切圆学习重点:切线的判定和画法学习难点:探索圆的切线的判定方法,作三角形内切圆的方法学习方法:师生共同探索法.学习过程:一、举
12、例:【例1】 如图,已知O中,AB是直径,过B点作O的切线BC,连结CO若ADOC交O于D求证:CD是O的切线【例2】 已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E求证:CD是小圆的切线【例3】 如图,在RtABC中,C=90,AC=5,BC=12,O的半径为3(1)当圆心O与C重合时,O与AB的位置关系怎样?(2)若点O沿CA移动时,当OC为多少时?C与AB相切?二、练习:课后练习: 作业: 小结:教后记:3.6 圆和圆的位置关系学习目标:经历探索两个圆位置关系的过程,理解圆与圆之间的位置关系,了解两圆外切、内切与两圆圆心距d,半径R和r的数量关系的联系学习重点:两
13、圆的位置关系,相切两圆的性质两圆的五种位置关系的描述性定义,要注意数学语言的严谨性和准确性,必须注意讲清关键性词语(如谁在谁的外部、内部、惟一公共点等)圆与圆的位置关系也可以与点和圆、直线和圆的位置关系类比记忆,每种位置关系可归纳为相离、相交、相切三类相切两圆的性质是由圆的对称性决定的,两个圆组成的图形也是轴对称的,对称轴是连心线学习难点:相切两圆位置关系的性质的理解学习方法:教师讲解与学生合作交流探索法.学习过程:一、例题讲解:【例1】 已知A、B相切,圆心距为10cm,其中A的半径为4cm,求B的半径【例2】 定圆O的半径是4cm,动圆P的半径是1cm当两圆相切时,点P与点O的距离是多少?
14、点P可以在什么样的线上移动?【例3】 已知两个圆互相内切,圆心距是2cm,如果一个圆的半径是3cm,那么另一个圆的半径是多少?【例4】 已知O1和O2的半径分别为1和5,圆心距为3,则两圆的位置关系是( )A相交 B内含 C内切 D外切【例5】 如图,施工工地的水平地面上,有三根外径都是1m的水泥管,两两相切地堆放在一起,其最高点到地面的距离是 二、课内练习:课后练习: 作业: 小结:教后记:3.7 弧长及扇形的面积学习目标:经历探索弧长计算公式及扇形面积计算公式的过程,了解弧长计算公式及扇形面积的计算公式,并会应用公式解决问题学习重点:弧长计算公式及理解,弧长公式=,其中R为圆的半径,n为圆
15、弧所对的圆心角的度数,不带单位由于整个圆周可看作360的弧,而360的圆心角所对的弧长为圆周长C=2R,所以1的圆心角所对的弧长是2R,即,可得半径为R的圆中,n的圆心角所对的弧长=圆心角是1的扇形的面积等于圆面积的,所以圆心角是n的扇形面积是S扇形=R2要注意扇形面积公式与弧长公式的区别与联系(扇形面积公式中半径R带平方,分母为360;而弧长公式中半径R不带平方,分母是180)已知S扇形、n、R四量中任意两个量,都可以求出另外两个量扇形面积公式S扇=R,与三角形的面积公式有些类似只要把扇形看成一个曲边三角形,把弧长看作底,R看作高就比较容易记了学习难点:利用弧长公式时应注意的问题及扇形面积公
16、式的灵活运用学习方法:学生互相交流探索法.学习过程:一、例题讲解:【例1】 一圆弧的圆心角为300,它所对的弧长等于半径为6cm的圆的周长,求该圆弧所在圆的半径【例2】 如图,在半径为3的O和半径为1的O中,它们外切于B,AOB=40AOCO,求曲线ABC的长【例3】 扇形面积为300,圆心角为30,求扇形半径【例4】 如图,正三角形ABC内接于O,边长为4cm,求图中阴影部分的面积课后练习: 作业: 小结:教后记:3.8 圆锥的侧面积学习目标:经历探索圆锥侧面积计算公式的过程,了解圆锥的侧面积计算公式,并会应用公式解决问题学习重点:圆锥的侧面展开图及侧面积的计算圆锥的侧面展开图是扇形,其半径等于母线长,弧长等于圆锥底面圆的周长设圆锥的底面半径为r,母线长为,则它的侧面积:S侧=r,S全=S侧S底=r(r)学习难点:对圆锥的理解认识圆锥是一个底面和一个侧面围成的,它可以看作是由一个直角三角形绕一条直角边所在直线旋转而成的图形学习方法:观察想象实践总结法.学习过程:一、例题讲解:【例1】 已知圆锥的底面积为4cm2,母线长为3cm,求它的侧面展开图的圆心角【例2】 若圆锥的底面直线为6cm,母线长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中信息技术课件获取途径
- 安全理念培训:四不伤害24条
- 初中信息技术课件第九课
- 人工智能与大数据2025:互联网广告精准投放算法效果与行业应用趋势报告
- 人工智能在影像诊断中的多源数据融合与分析报告
- 初中信息技术课件公众号
- 教育创新策略下的教师角色转变探讨
- 好吃的豆制品健康教案
- 2025版信息安全保密协议企业个人专享
- 二零二五年金融行业客户信息保密协议合同模板
- 奉贤区教育系统师德师风建设学习测试附有答案
- 西方经济学(第二版)完整整套课件(马工程)
- 扶贫农产品购销合同协议(农产品购销合同模板)
- 汽车维修高级工考试试题及参考答案
- 检验科安全管理制度汇总
- 英语音标拼读方法讲解
- GB/T 5782-2016六角头螺栓
- GB/T 23445-2009聚合物水泥防水涂料
- GB/T 13451.2-1992着色颜料相对着色力和白色颜料相对散射力的测定光度计法
- GB/T 11264-2012热轧轻轨
- 山东省中小学校档案管理暂行办法
评论
0/150
提交评论