




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.1.3 弧、弦、圆心角,圆是中心对称图形吗?它的对称中心在哪里?,一、思考,圆是中心对称图形,,它的对称中心是圆心.,圆心角:顶点在圆心的角叫做圆心角.,O,二、概念,如图中所示, AOB就是一个圆心角。,1、判别下列各图中的角是不是圆心角, 并说明理由。,如图,AOB= AOB将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么?,根据旋转的性质,将圆心角AOB绕圆心O旋转到AOB的位置时,显然AOBAOB,射线OA与OA重合,OB与OB重合而同圆的半径相等,OA=OA,OB=OB,从而点A与A重合,B与B重合,O,A,B,O,A,B,A,B,A,B,三、探究,因此,
2、弧AB与弧A1B1 重合,AB与AB重合,同样,还可以得到: 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_, 所对的弦_; 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角_,所对的优弧和劣弧_,这样,我们就得到下面的定理:,相等,相等,相等,分别相等,四、定理,延伸,圆心角定理及推论整体理解:,(1) 圆心角,(2) 弧,(3) 弦,知一得二,A,A,B ,B,证明:AB=AC, AB=AC, ABC 等腰三角形,又ACB=60,, ABC是等边三角形,AB=BC=CA., AOBBOCAOC.,A,B,C,O,五、例题,例1 如图在O中,AB=AC ,ACB=60, 求证:A
3、OB=BOC=AOC.,1.如图,AB、CD是O的两条弦 (1)如果AB=CD,那么_,_ (2)如果 = ,那么_,_ (3)如果AOB=COD,那么_,_ (4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?,AB=CD,AB=CD,相 等,因为AB=CD ,所以AOB=COD.,又因为AO=CO,BO=DO,,所以AOB COD.,又因为OE 、OF是AB与CD对应边上的高,,所以 OE = OF.,六、练习,2.如图,AB是O的直径, , COD=35, 求AOE的度数,解:,判断: 1、等弦所对的弧相等。 ( ) 2、等弧所对的弦相等。 ( ) 3、圆心角相等,所对的弦相等。( ) 4、弦相等,所对的圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物化学(第4版)课件 第2章 核酸化学
- 气候变化所致小岛国损失损害补偿责任问题研究
- 基于STSE教育理念的初中化学金属和金属材料的教学实践研究
- 下雨天安全教育
- 关爱妇女心理健康:现状与行动指南
- 颈椎间盘的护理课件
- 爆炸安全知识培训
- 人事劳资培训
- 项目管理人员安全教育培训
- 项目介绍课件模版
- 三防专项方案
- 《结直肠癌的影像诊断》课件
- 伐木合同协议书范本
- 地舒单抗治疗骨质疏松症
- 民宿托管运营合同协议
- 2025年保密教育线上培训考试试题及答案
- 系统化停车场管理方案数据分析与智能优化停车流程
- 变电运维安全管理
- 25春国家开放大学《中央银行理论与实务》形考任务1-4参考答案
- 卫生法规练习题库(附答案)
- 2025年-上海市安全员《C证》考试题库
评论
0/150
提交评论