模式识别课件prch5part2ding.ppt_第1页
模式识别课件prch5part2ding.ppt_第2页
模式识别课件prch5part2ding.ppt_第3页
模式识别课件prch5part2ding.ppt_第4页
模式识别课件prch5part2ding.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,Pattern ClassificationAll materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher,5.4 The Two-Category Linearly Separable Case,Linearly separable n samples belon

2、g to , if there exits a linear discriminant function that classifies all of them correctly, the samples are said to be linearly separable. Weight vector a is called a separating vector or solution vector,2,Normalization Replacing all samples labeled by their negatives is called normalization with th

3、is normalization we only need to look for a weight vector a such that Solution Region Margin the distance between old boundaries and new boundaries is,3,The problem of finding a linear discriminant function will be formulated as a problem of minimizing a criterion function,4,Gradient Descent Procedu

4、res define a criterion function that is minimized if a is a solution vector. This can often be solved by a gradient descent procedure. Choice of learning rate,5,Note: from (12) we have Substituting this into Eq.13. and minimize J(a(k+1), we can get Eq.(14) Newton Descent Note:,6,Newtons algorithm vs

5、 the simple gradient decent algorithm,7,5.5 Minimizing The Perception Criterion Function,The Perception Criterion Function Batch Perception Algorithm,8,Comparison of Four Criterion functions,9,Perceptron Criterion as function of weights,Criterion function plotted as a function of weights a1 and a2,

6、Starts at origin, Sequence is y2,y3, y1, y3 Second update by y3 takes solution farther than first update,10,Single-Sample Correction Interpretation of Single-Sample Correction,11,Some Direct Generalizations Variable-Increment Perceptron with Margin Algorithm Convergence Batch Variable Increment Perc

7、eption How to Choose b,12,Balanced Winnow Algorithm,13,5.6 Relaxation Procedures,Decent Algorithm criterion function: two problems of this criterion function criterion function:,14,Update rule :,15,Batch Relaxation with Margin Single-Sample Relaxation with margin Geometrical interpretation of Single

8、-Sample Relaxation with margin algorithm r(k) is the distance from a(k) to the hyperplane From Eq.35 we obtain,16,Underrelaxation and overrelaxation Convergence Proof,17,5.7 Nonseparable Behavior,Error-correction procedure For nonseparable data the corrections in an error-correction procedure can never cease. By averaging the weight vector produced by the correction rule, we can reduce the risk of obtaining a bad solution. Some heuristic methods are used in the error-correction rules. The goal is to obtain acceptable performance on nonseparable prob

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论