




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学 第二学期 第四章 不定积分 第五章 定积分及应用 第六章 微分方程,积分法,原 函 数,选 择 u 有 效 方 法,基 本 积 分 表,第一换元法 第二换元法,直接 积分法,分部 积分法,不 定 积 分,几种特殊类型 函数的积分,一、第四章 主要内容,1、原函数,定义,原函数存在定理,即:连续函数一定有原函数,2、不定积分,(1) 定义,(2) 微分运算与求不定积分的运算是互逆的.,(3) 不定积分的性质,3、基本积分表,是常数),5、第一类换元法,4、直接积分法,第一类换元公式(凑微分法),由定义直接利用基本积分表与积分的性质求不定积分的方法.,常见类型:,6、第二类换元法,第二类
2、换元公式,常用代换:,4、分部积分法,分部积分公式,5.选择u的有效方法:LIATE选择法,L-对数函数;,I-反三角函数;,A-代数函数;,T-三角函数;,E-指数函数;,哪个在前哪个选作u.,6、几种特殊类型函数的积分,(1)有理函数的积分,定义,两个多项式的商表示的函数称之.,真分式化为部分分式之和的待定系数法,令,(2) 三角函数有理式的积分,定义,由三角函数和常数经过有限次四则运算构成的函数称之一般记为,(3) 简单无理函数的积分,讨论类型:,解决方法:,作代换去掉根号,例1,解,二、典型例题,例2,解,例3,解,问题1: 曲边梯形的面积,问题2: 变速直线运动的路程,存在定理,广义
3、积分,定积分,定积分 的性质,定积分的 计算法,牛顿-莱布尼茨公式,二、第五章 主要内容,1、问题的提出,实例1 (求曲边梯形的面积A),实例2 (求变速直线运动的路程),方法:分割、求和、取极限.,2、定积分的定义,定义,记为,可积的两个充分条件:,定理1,定理2,3、存在定理,4、定积分的性质,性质1,性质2,性质3,性质5,推论:,(1),(2),性质4,性质7 (定积分中值定理),性质6,积分中值公式,5、牛顿莱布尼茨公式,定理1,定理2(原函数存在定理),定理 3(微积分基本公式),也可写成,牛顿莱布尼茨公式,6、定积分的计算法,换元公式,(1)换元法,(2)分部积分法,分部积分公式,、广义积分,(1)无穷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中级导游证考试试题中级导游证考试试题及答案
- 2025年医师定期考核试题及答案(皮肤病试题)
- 2025年《用电与消防》安全生产知识竞赛培训试题库及答案
- 光伏组件回收技术创新路径探索考核试卷
- 2025车工(初级)理论知识考试试题及答案
- 护士病房管理办法
- 2024年新疆疏附县卫生高级职称(卫生管理)考试题含答案
- 建材园区管理办法
- 抚恤补助管理办法
- 新疆产假管理办法
- 2025版一致行动人协议模板
- 理疗店合伙协议合同范本
- 广西畜禽养殖管理办法
- 教师数字素养提升实施方案
- 2025发展对象培训班考试试题及参考答案
- 呼吸内科专科建设
- 物业合同履约管理办法
- 电气监理工程师培训课件
- 油画创作教学课件
- 2025年南京市中考数学真题试卷
- GB/T 9163-2001关节轴承向心关节轴承
评论
0/150
提交评论