第五节三重积分(二)_第1页
第五节三重积分(二)_第2页
第五节三重积分(二)_第3页
第五节三重积分(二)_第4页
第五节三重积分(二)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第五节三重积分(二)分布图示 利用柱面坐标计算三重积分 例1 例2 例3 利用球面坐标计算三重积分 例4 例5 例6 空间立体的质心与转动惯量 例7 例8 例9 空间立体对质点的引力 例10 内容小结 课堂练习 习题105 返回内容要点一、利用柱面坐标计算三重积分点的直角坐标与柱面坐标之间的关系为 (5.1)柱面坐标系中的三族坐标面分别为常数:一族以轴为中心轴的圆柱面;常数:一族过轴的半平面;常数:一族与面平行的平面.柱面坐标系中的体积微元: ,为了把上式右端的三重积分化为累次积分,平行于轴的直线与区域的边界最多只有两个交点. 设在面上的投影为,区域用,表示. 区域关于面的投影柱面将的边界曲面

2、分为上、下两部分,设上曲面方程为,下曲面方程为,于是二、利用球面坐标计算三重积分点的直角坐标与柱面坐标之间的关系为 (5.3)球面坐标系中的三族坐标面分别为常数:一族以原点为球心的球面;常数:一族以原点为顶点,轴为对称轴的圆锥面;常数:一族过轴的半平面.球面坐标系中的体积微元: ,三、三重积分的应用空间立体的重心, .其中,为该物体的质量.空间立体的转动惯量.空间立体对质点的引力.例题选讲利用柱面坐标计算三重积分例1 (E01) 立体是圆柱面内部, 平面下方, 抛物面上方部分, 其上任一点的密度与它到z轴之距离成正比(比例系数为K), 求的质量m.解据题意,密度函数为所以利用柱坐标,先对积分,

3、在平面上投影域为故 例2 (E02) 计算 其中是由球面与抛物面所围成(在抛物面内的那一部分)的立体区域.解利用柱面坐标,题设两曲面方程分别为从中解得两曲面的交线为在面上的投影区域为对投影区域内任一点有所以例3 计算 其中是曲线绕轴旋转一周而成的曲面与平面所围的立体.解由曲线绕轴旋转所得曲面方程为旋转抛物面设利用球面坐标计算三重积分例4 (E03) 计算其中是锥面与平面所围的立体.解在球面坐标系中故积分区域可表为所以 注: 本题也可采用柱面坐标来计算.此时,锥面积分区域 同样得到例5 (E04)计算球体在锥面上方部分的体积(图9-5-8).解 在球面坐标系中,故所求体积例6 计算, 其中是由抛

4、物面和球面所围成的空间闭区域.解注意到关于和面对称,有且在面上的投影区域圆域对内任一点,有所以三重积分的应用例7 (E05) 已知均匀半球体的半径为a, 在该半球体的底圆的一旁, 拼接一个半径与球的半径相等, 材料相同的均匀圆柱体, 使圆柱体的底圆与半球的底圆相重合, 为了使拼接后的整个立体重心恰是球心, 问圆柱的高应为多少?解如图(见系统演示),设所求的圆柱体的高度为使圆柱体与半球的底圆在平面上.圆柱体的中心轴为轴,设整个立体为其体积为重心坐标为由题意应有于是 设圆柱体与半球分别为分别用柱面坐标与球面坐标计算,得得就是所求圆柱的高.例8 求密度为的均匀球体对于过球心的一条轴的转动惯量.解 取球心为坐标原点,球的半径为轴与轴重合,则球体所占空间闭区域所求转动惯量即球体对于轴的转动惯量为其中为球体的质量.例9 (E06) 求高为h, 半顶角为密度为 (常数)的正圆锥体绕对称轴旋转的转动惯量.解取对称轴为轴,取顶点为原点,建立如图坐标系,则利用截面法,由得到例10 (E07) 设半径为的匀质球(其密度为常数)占有空间区域求它对位于处的单位质量的质点的引力.解 设球的密度为由球体的对称性及质量分布的均匀性知所求引力沿轴的分量为其中为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论