




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、排列(二),复习巩固,从n个不同元素中,任取m( )个元素(m个元素不可重复取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.,1、排列的定义:,2.排列数的定义:,从n个不同元素中,任取m( )个元素的 所有排列的个数叫做从n个元素中取出m个元 素的排列数,(3)全排列数公式:,4.有关公式:,(2)排列数公式:,1计算:(1),(2),课堂练习,2从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地 上进行试验,有种不同的种植方法?,4信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能 打出不同的信号有( ),3从参加乒乓球团体比赛的5名运动员中选出3名进行某场
2、比赛, 并排定他们的出场顺序,有种不同的方法?,例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?,解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此, 比赛的总场次是,例2:有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?,例3:某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?,例4:用0到9这10个数字,可以组成多少个没有重复数字的三位数?,对排列方法分步思
3、考。,从位置出发,例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?,有约束条件的排列问题,例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?,有约束条件的排列问题,有约束条件的排列问题,例6:6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有( ) A.30种 B. 360种 C. 720种 D. 1440种,C,例7:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法: (1)男甲排在正中间; (2)男甲不在排头,女乙不在排尾; (3)三个女生排在一起; (4)三个女生两两都不相邻;
4、 (5)全体站成一排,甲、乙、丙三人自左向右顺序不变;,对于相邻问题,常用“捆绑法”,对于不相邻问题,常用 “插空法”,例9:一天要排语、数、英、体、班会六节课,要求上午的四节课中,第一节不排体育课,数学排在上午;下午两节中有一节排班会课,问共有多少种不同的排法?,例10:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:,(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾?,(4)若甲、乙两名女生相邻,且不与第三名女生相邻?,(1)7位同学站成一排,甲、乙只能站在两端?,(2)7位同学站成一排,甲、乙不能站在两端?,(5)甲、乙、丙3名同学必须相邻,而且要求乙、丙分别站 在甲的两边?,小结: 1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置; 某些元素要求连排(即必须相邻); 某些元素要求分离(即不能相邻);,2基本的解题方法: ()有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法); 特殊元素,特殊位置优先安排策略,()某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律尽职调查员考试试卷及答案
- 巢湖市营养学会征求意见表
- 2025年腈纶扁平丝项目建议书
- 2025年树脂型密封胶项目建议书
- Unit 3 My weekend plan(第6课时)Part B Lets check 教案人教pep英语六年级上册
- 2025年江西省高校毕业生“三支一扶”计划招募考试试题【答案】
- 2025年曲阜市社区工作者招聘考试笔试试题【答案】
- 2025年非调质钢项目合作计划书
- 消防员安全培训心得体会(3篇)
- 湘艺版音乐六年级上册《摇太阳》教案1
- 初中数学学法指导讲座
- GB 8109-2023推车式灭火器
- 音乐考试真题
- 彩钢屋面自粘卷材施工方案
- 石油化工设备设计便查手册
- 集卡车安全操作规程
- 高考英语词汇3500电子版
- GMP认证资料设备管理制度
- 赫兹接触课件完整版
- 2022年新疆公务员考试行测真题及答案解析
- 脑癌-胶质瘤NCCN患者指南中文版2021
评论
0/150
提交评论