




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、唐河县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为( )A B C D2 已知i是虚数单位,则复数等于( )A +iB +iCiDi3 若双曲线C:x2=1(b0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A2BC3D4 在正方体ABCDA1B1C1D1中,点E,F分别是棱AB,BB1的中点,则异面直线EF和BC1所成的角是( )A60B45C90D1205 在区间上恒正,则的取值范围为( )A B C D以上都不对6 已
2、知函数f(x)=2x,则f(x)=( )A2xB2xln2C2x+ln2D7 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )AB4CD28 偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为( )A2B1C0D19 下列关系正确的是( )A10,1B10,1C10,1D10,110两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:111定义在R上的奇函数f(x)满足f(x+3)=f(x
3、),当0x1时,f(x)=2x,则f (2015)=( )A2B2CD 125名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD53二、填空题13椭圆+=1上的点到直线l:x2y12=0的最大距离为14已知,则函数的解析式为_.15如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想16在正方体ABCDA1B1C1D1中,异面直线A1B与AC所成的角是17一质点从正四面体ABCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动第1次运动经过棱AB由A到B,第2次运动经过棱
4、BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,对于Nn*,第3n次运动回到点A,第3n+1次运动经过的棱与3n1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面按此运动规律,质点经过2015次运动到达的点为18不等式的解集为R,则实数m的范围是 三、解答题19我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示()依茎叶图判断哪个班的平均分高?()现从甲班所抽数学成绩不低于80分的同学中随
5、机抽取两名同学,用表示抽到成绩为86分的人数,求的分布列和数学期望;()学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的22列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)20已知函数f(x)=ex(x2+ax)在点(0,f(0)处的切线斜率为2()求实数a的值;()设g(x)=x(xt)(tR),若g(x)f(x)对x0,1
6、恒成立,求t的取值范围;()已知数列an满足a1=1,an+1=(1+)an,求证:当n2,nN时 f()+f()+L+f()n()(e为自然对数的底数,e2.71828) 21甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复)(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?22在平面直角坐标系xOy中,圆C:x2+y2=4,A(,0),A1(,0),点P为平面内一动点,以PA为直径的圆与圆C相切()求证:|PA1|+|PA|为定值,并求出点P的轨迹方程C1;()若直线PA与曲线C1的另一交
7、点为Q,求POQ面积的最大值23已知a0,b0,a+b=1,求证:()+8;()(1+)(1+)9 24【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形,其设计创意如下:在长、宽的长方形中,将四边形沿直线翻折到(点是线段上异于的一点、点是线段上的一点),使得点落在线段上.(1)当点与点重合时,求面积;(2)经观察测量,发现当最小时,LOGO最美观,试求此时LOGO图案的面积.唐河县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】 考点:抛物线的定义及性质【易错点睛】抛物线问题的三个注意事项:(1)求
8、抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点2 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题3 【答案】B【解析】解:双曲线C:x2=1(b0)的顶点为(1,0),渐近线方程为y=bx,由题意可得=,解得b=1,c=,即有离心率e=故选:B【点评】本题考查双曲线的离心率的求法,注意运用点到直线
9、的距离公式,考查运算能力,属于基础题4 【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1)=(2,0,2),=(0,1,1),=,=60异面直线EF和BC1所成的角是60故选:A【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题5 【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.6 【答案】B【解析】解:f(x)=2x,则f(x)=2xln2,故选:B【点评】本题考
10、查了导数运算法则,属于基础题7 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h=3故V=2故选C8 【答案】D【解析】解:f(x+2)为奇函数,f(x+2)=f(x+2),f(x)是偶函数,f(x+2)=f(x+2)=f(x2),即f(x+4)=f(x),则f(x+4)=f(x),f(x+8)=f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由f(x+4)=
11、f(x),得当x=2时,f(2)=f(2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键9 【答案】B【解析】解:由于10,1,10,1,故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键10【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D11【答案】B【解析】解:因为f(x+3)=f
12、(x),函数f(x)的周期是3,所以f(2015)=f(36721)=f(1);又因为函数f(x)是定义R上的奇函数,当0x1时,f(x)=2x,所以f(1)=f(1)=2,即f(2015)=2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f(36721)=f(1)12【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题二、填空题13【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()
13、=1时,d取得最大值为4,故答案为:414【答案】【解析】试题分析:由题意得,令,则,则,所以函数的解析式为.考点:函数的解析式.15【答案】16【答案】60 【解析】解:连结BC1、A1C1,在正方体ABCDA1B1C1D1中,A1A平行且等于C1C,四边形AA1C1C为平行四边形,可得A1C1AC,因此BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则A1B1C中A1B=BC1=C1A1=a,A1B1C是等边三角形,可得BA1C1=60,即异面直线A1B与AC所成的角等于60故答案为:60【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正
14、方体的性质、空间角的定义及其求法等知识,属于中档题17【答案】D 【解析】解:根据题意,质点运动的轨迹为:ABCADBACDA接着是BCADBACDA周期为9质点经过2015次运动,2015=2239+8,质点到达点D故答案为:D【点评】本题考查了函数的周期性,本题难度不大,属于基础题18【答案】 【解析】解:不等式,x28x+200恒成立可得知:mx2+2(m+1)x+9x+40在xR上恒成立显然m0时只需=4(m+1)24m(9m+4)0,解得:m或m所以m故答案为:三、解答题19【答案】 【解析】【专题】综合题;概率与统计【分析】()依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结
15、论;()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2,求出概率,可得的分布列和数学期望;()根据成绩不低于85分的为优秀,可得22列联表,计算K2,从而与临界值比较,即可得到结论【解答】解:()由茎叶图知甲班数学成绩集中于609之间,而乙班数学成绩集中于80100分之间,所以乙班的平均分高()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2P(=0)=,P(=1)=,P(=2)=则随机变量的分布列为012P数学期望E=0+1+2=人()22列联表为甲班乙班合计优秀31013不优秀171027合计202040K2=5.5845.02
16、4因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题20【答案】 【解析】解:()f(x)=ex(x2+ax),f(x)=ex(x2+ax)+ex(2x+a)=ex(x2+ax2xa);则由题意得f(0)=(a)=2,故a=2()由()知,f(x)=ex(x2+2x),由g(x)f(x)得,x(xt)ex(x2+2x),x0,1;当x=0时,该不等式成立;当x(0,1时,不等式x+t+ex(x+2)在(0,1上恒成立,即tex(x+2)+xmax设h(x)=ex(x+2)+x,x(0,1,h(x
17、)=ex(x+1)+1,h(x)=xex0,h(x)在(0,1单调递增,h(x)h(0)=0,h(x)在(0,1单调递增,h(x)max=h(1)=1,t1()证明:an+1=(1+)an,=,又a1=1,n2时,an=a1=1=n;对n=1也成立,an=n当x(0,1时,f(x)=ex(x22)0,f(x)在0,1上单调递增,且f(x)f(0)=0又f()(1in1,iN)表示长为f(),宽为的小矩形的面积,f()f(x)dx,(1in1,iN), f()+f()+f()= f()+f()+f()f(x)dx又由(),取t=1得f(x)g(x)=x2+(1+)x,f(x)dxg(x)dx=+
18、, f()+f()+f()+,f()+f()+f()n(+)【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力 21【答案】 【解析】(本小题满分12分)解:(1)甲、乙两人从5道题中不重复各抽一道,共有54=20种抽法记“甲抽到选择题,乙抽到判断题”为事件A,则事件A含有的基本事件数为32=6(4分),甲抽到选择题,乙抽到判断题的概率是(6分)(2)记“甲、乙二人中至少有一人抽到选择题”为事件B,其对立事件为“甲、乙二人都抽到判断题”,记为事件C,则事件C含有的基本事件数为21=2(8分),(11分)甲、乙二人中至少有一人抽到选择题的概率是(12分)【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件、对立事件概率计算公式的合理运用22【答案】 【解析】()证明:设点P(x,y)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖南省长沙市中考招生考试数学真题试卷(真题+答案)
- 预防肺炎主题班会课件
- 预防疾病安全课件
- 静脉治疗护士教育培训体系
- 《电子产品装配与测试》课件-任务2 仪器的使用
- 预防儿童近视课件
- 预防传染保健康课件
- 学校辅导员(班导师)管理及考评办法
- 城市污水管网建设项目节能评估报告(参考模板)
- 2025年年云服务项目合作计划书
- 供应商具备履行合同所必需的设备和专业技术能力的证明材料8篇
- 玩具行业智能玩具设计制造系统研发方案
- 成都大学附属中学语文新初一分班试卷含答案
- 富马酸泰吉利定注射液-临床药品解读
- 酒店安全事故经典案例分析
- 《分析化学》课程思政教学案例(一等奖)
- TCANSI 133-2024 液化天然气(LNG)燃料动力船舶槽车气试加注作业安全要求
- 改革开放三十年云南省金融业发展研究
- FIDIC施工合同条件(1999版,红皮书)
- 第八章《运动和力》达标测试卷(含答案)2024-2025学年度人教版物理八年级下册
- 【课件】当代图书馆的功能定位与 信息资源建设的发展趋势
评论
0/150
提交评论