




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、随机变量方差的概念及性质,三、例题讲解,二、重要概率分布的方差,四、矩的概念,第4.2节方差,五、小结,1. 方差的定义,一、随机变量方差的概念及性质,方差是一个常用来体现随机变量X取值分散程度的量.如果D(X)值大, 表示X 取值分散程度大, E(X)的代表性差;而如果D(X) 值小, 则表示X 的取值比较集中,以E(X)作为随机变量的代表性好.,2. 方差的意义,离散型随机变量的方差,连续型随机变量的方差,3. 随机变量方差的计算,(1) 利用定义计算,(2) 利用公式计算,4. 方差的性质,(1) 设 C 是常数, 则有,(2) 设 X 是一个随机变量, C 是常数, 则有,(3)
2、设 X, Y 相互独立, D(X), D(Y) 存在, 则,推广,(6)契比雪夫不等式,契比雪夫不等式,契比雪夫,1. 两点分布,则有,二、重要概率分布的方差,2. 二项分布,则有,设随机变量 X 服从参数为 n, p 二项分布, 其分布律为,3. 泊松分布,则有,4. 均匀分布,则有,5. 指数分布,则有,6. 正态分布,则有,分布,参数,数学期望,方差,分布,参数,数学期望,方差,解,三、例题讲解,例,于是,四、矩的概念,定义,定义,2. 说明,五、小结,1. 方差是一个常用来体现随机变量X 取值分散程度的量. 如果D(X)值大,表示X 取值分散程度大, E(X) 的代表性差; 而如果D(X)值小, 则表示X 的取值比较集中, 以E(X) 作为随机变量的代表性好.,2. 方差的计算公式,3. 方差的性质,4. 契比雪夫不等式,Pafnuty Chebyshev,Born: 16 May 1821 in Okatovo, RussiaDied: 8 Dec 1894 in St Petersburg, Russ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省郑口中学2025届物理高二下期末达标检测模拟试题含解析
- 2025届四川省合江中学高二物理第二学期期末达标检测试题含解析
- 2025届抚州市物理高二第二学期期末考试模拟试题含解析
- 2025届山东阳谷县第五中学物理高一第二学期期末考试试题含解析
- 2025届西藏日喀则市第四高级中学高二物理第二学期期末经典试题含解析
- 二零二五版LNG运输船员培训及派遣合同
- 2025版餐饮厨师职业技能培训就业合同
- 2025版汽车租赁及应急响应服务合同
- 二零二五年度玻璃制品玻璃钢安装工程合同范本
- 厦门市重点中学2025届物理高一下期末教学质量检测模拟试题含解析
- 病理科实验室生物安全
- 安宁疗护的护理常规
- 2025年高考英语完形填空+语法填空专练(原卷版+解析版)
- 医院内部便利店租赁合同
- 2024年创意市集承办协议
- 合同能源托管合同
- 营养专科护士总结汇报
- 仓库转让合同范本
- 职业技能竞赛-网络与信息安全管理员理论题库(附参考答案)
- 2023年山东青岛局属高中自主招生物理试卷真题(含答案详解)
- 2024年中华全国律师协会招聘5人历年(高频重点复习提升训练)共500题附带答案详解
评论
0/150
提交评论