




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2.2椭圆的几何性质1掌握椭圆的简单几何性质(重点)2掌握椭圆的离心率的求法,领会离心率是刻画椭圆“扁圆程度”的量(难点)3会用椭圆及性质处理一些实际问题(重点、难点)基础初探教材整理1椭圆的简单几何性质阅读教材P34,完成下列问题.焦点在x轴上焦点在y轴上图形标准方程1(ab0)1(ab0)范围axa且bybbxb且aya顶点(a,0),(0,b)(b,0),(0,a)轴长长轴长2a,短轴长2b焦点(c,0)(0,c)焦距F1F22c对称轴x轴,y轴对称中心(0,0)离心率e(0e1)判断(正确的打“”,错误的打“”)(1)椭圆1(ab0)的长轴长等于a.()(2)椭圆上的点到焦点的距离
2、的最小值为ac.()(3)椭圆的长轴,短轴就是x轴和y轴()(4)椭圆y21中,变量x的范围是2,2()【解析】(1)1(ab0)的长轴长等于2a,故错误;(2)椭圆上的点到焦点的距离的最小值为ac,最大值为ac,故正确;(3)椭圆的长轴和短轴是线段,而不是直线,故错误;(4)椭圆y21中,a,故x的范围是,故错误【答案】(1)(2)(3)(4)教材整理2离心率阅读教材P34P35例1以上部分,完成下列问题1定义:焦距与长轴长的比叫做椭圆的离心率2范围:e(0,1)3作用:当椭圆的离心率越接近于1时,则椭圆越扁;当椭圆的离心率越接近于0时,则椭圆越接近于圆填空:(1)椭圆1的离心率是_(2)两
3、个椭圆y21和1中,更接近于圆的是_(3)椭圆1(a2)的离心率e,则实数a的值为_【解析】(1)1中,a2,c1,所以离心率e.(2)椭圆y21的离心率e1,椭圆1的离心率e2.因为e1e2,所以椭圆1更接近于圆(3)因为a2,所以e,解得a2.【答案】(1)(2)1(3)2质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组合作型由椭圆的方程求其几何性质(1)椭圆2x23y212的两焦点之间的距离为_(2)求椭圆81x2y281的长轴和短轴的长及其焦点和顶点坐标,离心率【精彩点拨】分清椭圆的焦点所在的轴,确定a,b后研究性质【自主解
4、答】(1)把椭圆2x23y212化为标准方程,得1,易知a26,b24,c2a2b22,c,故2c2.【答案】2(2)椭圆的方程可化为x21,a9,b1,c4,椭圆的长轴和短轴长分别为18,2.椭圆的焦点在y轴上,故其焦点坐标为F1(0,4),F2(0,4),顶点坐标为A1(0,9),A2(0,9),B1(1,0),B2(1,0),e.研究椭圆几何性质的方法求椭圆的几何性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a,b的数值,进而求出c,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质再练一题1已知椭圆x2(m3)y2m(m0)的离心率e,求m的值及椭圆的
5、长轴和短轴的长,焦点坐标,顶点坐标. 【导学号:】【解】椭圆方程可化为1(m0),因为m0,所以m,所以焦点在x轴上,即a2m,b2,c.由e,得e,所以m1.所以椭圆的标准方程为x21.所以a1,b,c,所以椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F1,F2;四个顶点坐标分别为A1(1,0),A2(1,0),B1,B2.由椭圆的几何性质求方程求适合下列条件的椭圆的标准方程(1)中心在原点,焦点在坐标轴上,长轴长是6,离心率是;(2)中心在原点,焦点在坐标轴上,在x轴上的一个焦点与短轴的两个端点的连线互相垂直,且焦距为6.【精彩点拨】【自主解答】(1)设椭圆方程为1(ab0)或1(ab0
6、)由已知得2a6,a3.又e,c2.b2a2c2945.椭圆的标准方程为1或1.(2)由题意知焦点在x轴上,故可设椭圆的标准方程为1(ab0),且两焦点为F(3,0),F(3,0)如图所示,A1FA2为等腰直角三角形,OF为斜边A1A2的中线,且|OF|c,|A1A2|2b,cb3,a2b2c218.椭圆的标准方程为1.由椭圆的几何性质求方程的方法步骤1利用椭圆的几何性质求标准方程通常采用待定系数法2根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论一般步骤是:求出a2,b2的值;确定焦点所在的坐标轴;写出标准方程再练一题2已知椭圆C以坐标轴为对称轴,长轴长是
7、短轴长的5倍,且经过点A(5,0),求该椭圆的标准方程【解】法一:若椭圆的焦点在x轴上,则设其标准方程为1(ab0)由题意得解得故所求椭圆的标准方程为y21.若椭圆的焦点在y轴上,则设其标准方程为1(ab0)由题意得解得故所求椭圆的标准方程为1.综上可知,所求椭圆的标准方程为y21或1.法二:设椭圆的标准方程为1(m0,n0,mn),由题意得或解得或故所求椭圆的标准方程为y21或1.求离心率(1)(2016安阳高二检测)如图222,已知F是椭圆1(ab0)的左焦点, P是椭圆上的一点,PFx轴, OPAB(O为原点), 则该椭圆的离心率是_图222(2)已知椭圆C的中心在坐标原点,连接椭圆的长
8、轴的一个端点A和短轴的一个端点B,OAB30,则椭圆的离心率为_【精彩点拨】(1)利用OPAB找到a,c或a,b的关系,可求离心率(2)在直角三角形OAB中,由OAB30,可得a,b的关系,利用这个a,b的关系可求离心率【自主解答】(1)由椭圆可知F(c,0),故得P,kOP,又B(0,b),A(a,0),kAB.OPAB,得bc,a2b2c22c2,即e2,e.(2)如图所示,不妨设椭圆的焦点在x轴上,由条件得OAB30,OAa,OBb,tan 30,e211,e.【答案】(1)(2)求椭圆的离心率,关键是寻找a与c的关系,一般地:(1)若已知a,c,则直接代入e求解;(2)若已知a,b,则
9、由e求解;(3)若已知a,b,c的关系,则可转化为a,c的齐次式,再转化为含e的方程求解即可.再练一题3A为y轴上一点,F1,F2是椭圆的两个焦点,AF1F2为正三角形,且AF1的中点B恰好在椭圆上,求此椭圆的离心率. 【导学号:】【解】如图,连接BF2.AF1F2为正三角形,且B为线段AF1的中点,F2BBF1.又BF2F130,|F1F2|2c,|BF1|c,|BF2|c.据椭圆定义得|BF1|BF2|2a,即cc2a,1.椭圆的离心率e1.探究共研型直线与椭圆的位置关系探究1直线与椭圆有几种位置关系?能否像判断直线与圆的位置关系那样判断吗?如何判断直线与椭圆的位置关系?【提示】(1)直线
10、与椭圆有相交、相切和相离三种位置关系,其几何特征分别是直线与椭圆有两个交点、有且只有一个交点、无公共点,并且二者互为充要条件但不能像判断直线与圆的位置关系那样进行判断(2)判断直线与椭圆的位置关系可使用代数法,即先将直线方程与椭圆的方程联立,消去一个未知数y(或x),得到关于x(或y)的一个一元二次方程利用一元二次方程根的判别式,根据0,b0)的弦AB的中点坐标为(x0,y0),能否确定直线AB的斜率?【提示】设A(x1,y1),B(x2,y2),则所以(xx)(yy)0,变形得,即kAB.这种方法叫平方差法,也叫点差法已知椭圆y21.(1)当m为何值时,直线yxm与椭圆有两个不同的交点?(2
11、)当m2时,求直线yxm被椭圆截得的线段长【精彩点拨】【自主解答】(1)联立消去y,得5x28mx4(m21)0.(*)64m280(m21)0,m,当mb0)的左、右焦点,P为直线x上一点,F2PF1是底角为30的等腰三角形,则E的离心率为_【解析】如图,F2PF1是底角为30的等腰三角形,PF2A60,PF2F1F22c,AF2c,2ca,e.【答案】5已知点P(4,2)是直线l被椭圆1所截得的线段的中点,求直线l的方程【解】设直线l与椭圆的交点为A(x1,y1),B(x2,y2),两式相减,有(x1x2)(x1x2)4(y1y2)(y1y2)0.又x1x28,y1y24,即k,直线l的方
12、程为x2y80.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)学业达标一、填空题1若椭圆1(0a36)的焦距为4,则a_.【解析】0a36,36a22,a32.【答案】322椭圆25x29y2225的长轴长、短轴长、离心率依次是_【解析】方程可化为1,易知a5,b3,c4,长轴长为10,短轴长为6,离心率为.【答案】10,6,3已知椭圆1与椭圆1有相同的长轴,椭圆1的短轴长与椭圆1的短轴长相等,则a2_,b2_.【解析】因为椭圆1的长轴长为10,焦点在x轴上,椭圆1的短轴长为6,所以a225,b29.【答案】2594已知椭圆G的中心在坐标原点,长轴
13、在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为_【解析】由题意得2a12,所以a6,c3,b3.故椭圆方程为1.【答案】15椭圆1的离心率为,则实数m的值为_. 【导学号:】【解析】当椭圆的焦点在x轴上时,a2m,b24,且m4,则e211,m;当椭圆的焦点在y轴上时,a24,b2m,且0m4,则e211,m3.【答案】3或6椭圆1(ab0)的左焦点F到过顶点A(a,0),B(0,b)的直线的距离等于,则椭圆的离心率为_【解析】由题意知直线AB的方程为1,即bxayab0.左焦点为F(c,0),则.(ac),7(ac)2a2b2a2a2c22a2c2,即5a21
14、4ac8c20,8e214e50,解得e或e.又0eb0),得y2b2,y.设P,椭圆的右顶点A(a,0),上顶点B(0,b)OPAB,kOPkAB,bc.而a2b2c22c2,ac,e.又ac,解得a,c,b,所求椭圆的标准方程为1.10设直线yxb与椭圆y21相交于A,B两个不同的点(1)求实数b的取值范围;(2)当b1时,求|AB|.【解】(1)将yxb代入y21,消去y,整理得3x24bx2b220.因为直线yxb与椭圆y21相交于A,B两个不同的点,所以16b212(2b22)248b20,解得b.所以b的取值范围为(,)(2)设A(x1,y1),B(x2,y2)当b1时,方程为3x
15、24x0.解得x10,x2.所以y11,y2.所以|AB|.能力提升1已知椭圆C:1(ab0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点若AF1B的周长为4,则C的方程为_【解析】根据题意,因为AF1B的周长为4,所以AF1ABBF1AF1AF2BF1BF24a4,所以a.又因为椭圆的离心率e,所以c1,b2a2c2312,所以椭圆C的方程为1. 【答案】12若A为椭圆x24y24的右顶点,以A为直角顶点作一个内接于椭圆的等腰直角三角形,则该三角形的面积为_. 【导学号:】【解析】由题意得,该三角形的两直角边关于x轴对称,且其中一边在过点A(2,0),斜率为1的直线上,且此直线的方程为yx2,代入x24y24,得5x216x120,解得x12,x2.把x代入椭圆方程,得y,三角形的面积S.【答案】3过椭圆C:1(ab0)的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若k,则椭圆离心率的取值范围是_【解析】因为k,所以点B在第一象限由题意可知点B的坐标为.因为点A的坐标为(a,0),所以k,所以.又因为b2a2c2,所以1e,所以1e,解得eb0)的左、右焦点,A是椭圆C的上顶点,B是直线AF2与椭圆C的另一个交点,F1AF260.图225(1)求椭圆C的离心率;(2)已知AF1B的面积为4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业环境下员工心理压力的干预与缓解策略
- 企业管理与战略运营构建健康且高效的办公体系之重要性
- 教育心理学在行政岗位的实践与应用
- 北方工业大学《钢琴作品鉴赏》2023-2024学年第一学期期末试卷
- 平安金融活动方案
- 幼儿艺术活动方案
- 年终公司联谊活动方案
- 广汽埃安开业活动方案
- 幼儿园拍照剪影活动方案
- 年末冲刺活动方案
- 高校教师职业道德素养题库(重点)
- 前置胎盘处理流程
- 《可见的学习与深度学习》读书笔记思维导图PPT模板下载
- GB/T 4436-2012铝及铝合金管材外形尺寸及允许偏差
- 头颈部肿瘤NCCN指南中文版2021.v3
- GB/T 1449-2005纤维增强塑料弯曲性能试验方法
- A320燃油系统概述解析
- 营销策略分析 外文文献
- 丰田特殊要求课件
- 深圳知名地产住宅项目机电策划方案
- 高处吊篮使用审批表
评论
0/150
提交评论