




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 10 课时:2.4 向量的数量积(二)【三维目标】:一、知识与技能1. 掌握平面向量数量积运算规律,能利用数量积的5个重要性质及数量积运算规律解决有关问题.2. 掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题二、过程与方法 1.通过师生互动,学生自主探究、交流与合作培养学生探求新知及合作能力;2.通过讲解例题,培养学生逻辑思维能力;3.让学生充分经历,体验数量积的运算律以及解题的规律。三、情感、态度与价值观1.让学生进一步领悟数形结合的思想;2.让学生进一步理解向量的数量积,进一步激发学生学习数学的兴趣、积极性和勇于创新的精神.【教学重点与难点】:重点:运算律的
2、理解和平面向量数量积的应用难点:平面向量的数量积运算律的理解【学法与教学用具】:1. 学法:(1)自主性学习+探究式学习法: (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.2. 教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】: 一、创设情景,揭示课题【复习提问】:1.(1)两个非零向量夹角的概念;(2)平面向量数量积(内积)的定义;(3)“投影”的概念;(4)向量数量积的几何意义;(5)两个向量的数量积的性质。2判断下列各题正确与否:若,则对任一向量,有; ( ) 若,则对任一非零向量,有; ( )若,则; ( )若,则至少有
3、一个为零向量; ( )若,则当且仅当时成立; ( )对任意向量,有 ( ) 二、研探新知1.数量积的运算律(证明的过程可根据学生的实际水平决定)(1)交换律:证明:设夹角为,则,(2)数乘结合律:证明:若,此式显然成立.若, ,若,综上可知成立.qq1q2ABOA1B1C(3)分配律: 在平面内取一点,作=, =,=, (即)在方向上的投影等于在方向上的投影和,即: , 即:【说明】:(1)一般地,()()(2),(3)有如下常用性质:|,()()(),2 向量的数量积不满足结合律分析:若有()(),设、夹角为,、夹角为,则()|cos,()|cos,若,则|,进而有:()(),这是一种特殊情
4、形,一般情况下不成立。举反例如下:已知|,|,|,与夹角是60,与夹角是45,()(|cos60),()(|cos45)而,故()()三、质疑答辩,排难解惑,发展思维 例1 已知都是非零向量,且与垂直,与垂直,求与的夹角解:由题意可得: 两式相减得:, 代入或得:,设的夹角为,则,,即与的夹角为例2求证:平行四边形两条对角线平方和等于四条边的平方和。【举一反三】1 用向量方法证明:菱形对角线互相垂直。 证:设= , = 为菱形 | = | = (+)(-) = 2 -2 = |2 - |2 = 0 ,ABCDEFH即菱形对角线互相垂直。2. 如图,是的三条高,求证:相交于一点。变式:用向量证明
5、三角形的三条角平分线相交于一点。例3 四边形中,=,=,=,,且,试问四边形是什么图形?例4 设与是夹角为60,且|,是否存在满足条件的,使|+|=2|-|?请说明理由。四、巩固深化,反馈矫正 1.已知|=1,|=,(1)-与垂直,则的夹角是_; (2)若,; (3)若、的夹角为,则|+|;2.已知|=2,|=1,与之间的夹角为,那么向量-4的模为_;|-4|-|3.设、是两个单位向量,其夹角为,求向量=2+与=2-3的夹角;6.对于两个非零向量、,(1)求使|最小时的值,并求此时与的夹角。(2)当的模取最小值时,求的值;求证:与垂直。解:(2),当时, 最小; ,与垂直。五、归纳整理,整体认识通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题. 六、承上启下,留下悬念 1向量的模分别为,的夹角为,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滁州市重点中学2025年物理高二第二学期期末综合测试模拟试题含解析
- 宁夏银川市第六中学2025年物理高一第二学期期末教学质量检测模拟试题含解析
- 2025届广东省联考联盟物理高二下期末质量跟踪监视模拟试题含解析
- 冬季用电安全宣传教育
- 2025年山西省范亭中学物理高二下期末达标检测试题含解析
- 山东省泰安一中2025年高二物理第二学期期末经典试题含解析
- 2025年玻璃幕墙工程安全质量保障合同
- 二零二五年专业保安服务团队劳动合同范本
- 2025版高端建筑材料代购合作协议
- 2025版A包海南鲜品品牌产业链延伸开发合同
- 2023火力发电厂热工开关量和模拟量控制系统设计规程
- 史记《孔子世家》原文
- 妊娠高血压综合征眼底病变
- 宿州市国企招聘考试真题及答案
- 国开大学2023年01月11237《物流管理基础》期末考试答案
- 2023年探月与航天工程中心招聘笔试备考试题及答案解析
- 胃癌常见手术方式
- 中国新闻社 笔试 综合知识(有标准答案)
- GB/T 3462-2007钼条和钼板坯
- GB/T 3142-2019润滑剂承载能力的测定四球法
- GB/T 28046.2-2019道路车辆电气及电子设备的环境条件和试验第2部分:电气负荷
评论
0/150
提交评论