




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:,27.1.3圆的轴对称性,?,复习提问:,1、什么是轴对称图形?我们在前面学过哪些轴对称图形?,如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形,2、我们所学的圆是不是轴对称图形呢?,圆是轴对称图形,经过圆心的每一条直线都是它们的对称轴,看一看,AEBE,AEBE,动动脑筋,叠 合 法,垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,题设,结论,(1)过圆心 (直径) (2)垂直于弦,(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧,讨论,(1)过圆心 (2)垂直于弦 (3)
2、平分弦 (4)平分弦所对优弧 (5)平分弦所对的劣弧,(3) (1),(2) (4) (5),(2) (3),(1) (4) (5),(1) (4),(3) (2) (5),(1) (5),(3) (4) (2),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧 (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,命题(1):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,已知:CD是直径,AB是弦,并且CD平分AB,求证:CDAB,ADBD,ACBC,命题(2):弦的垂直平分线经过圆心,并且平分弦
3、所对的两条弧,已知:AB是弦,CD平分AB, CD AB,求证:CD是直径, ADBD,ACBC,命题(3):平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,已知:CD是直径,AB是弦,并且ADBD (ACBC)求证:CD平分AB,ACBC (ADBD)CD AB,.,O,C,A,E,B,D,C,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧,(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,垂径定理,记忆,判断,(1)垂直于弦的直线平分
4、弦,并且平分弦所对的弧.( ),(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心.( ),(3)圆的不与直径垂直的弦必不被这条直径平分.( ),(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧( ),(5)圆内两条非直径的弦不能互相平分( ),例1 如图,已知在O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求O的半径。,解:连结OA。过O作OEAB,垂足为E,则OE3厘米,AEBE。AB8厘米 AE4厘米 在RtAOE中,根据勾股定理有OA5厘米 O的半径为5厘米。,讲解,根据垂径定理与推论可知对于一个圆和一条直线来说。如果具备,(1)过圆心 (2)垂直于弦 (3)平分弦(4)
5、平分弦所对的优弧 (5)平分弦所对的劣弧,上述五个条件中的任何两个条件都可以推出其他三个结论,注意,例2:平分弧AB,画法:连结AB;画AB的中垂线,交弧AB于点E。 点E就是所求的分点。,A,B,E,C,D,例3 已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。 求证:ACBD。,证明:过O作OEAB,垂足为E,则AEBE,CEDE。 AECEBEDE。 所以,ACBD,E,讲解,讲解,推论(1),(1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧,(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,推论(2),圆的两条平行弦所夹的弧相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络推广试题及答案
- 2025年医药物流保温协议范本
- 2025年物流配送合作策划协议草案
- 2025年员工福利权益放弃策划协议
- 商业空间节假日旅游市场调研规划基础知识点归纳
- 创客教育理念在语文课堂中的实践与反思
- 理赔业务风险培训成本风险基础知识点归纳
- 农业生物技术创新与食品安全保障
- 医体融合促进康复医疗产业发展的路径
- 老旧市政供水管网更新改造项目工程方案
- 网络安全技术实操技能考核试题及答案
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 《分析化学》期末考试试卷(A)及答案
- 烧烤店菜单模板
- 急诊科护理查房中毒-PPT课件
- Q∕GDW 10799.6-2018 国家电网有限公司电力安全工作规程 第6部分:光伏电站部分
- 宁波市建设工程资料统一用表(2022版)1 通用分册
- 电大汉语言文学专业本科社会实践调查报告
- 11-059 职业技能鉴定指导书 继电保护(第二版)(11-059职业技能鉴定指导书职业标准试题库)
- GMP基础知识(新员工培训)
- LGJ钢芯铝绞线参数
评论
0/150
提交评论