




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数y=a(x-h)2的图象和性质,问题回顾,1.二次函数y=x2+c的图象是什么?,答:是抛物线,2.二次函数的性质有哪些?请填写下表:,向上,Y轴,(0,0),最小值是0,Y随x的增大而减小,Y随x的增大而增大,向下,Y轴,(0,0),最大值是0,Y随x的增大而增大,Y随x的增大而减小,向上,Y轴,(0,c),最小值是C,Y随x的增大而减小,Y随x的增大而增大,向下,Y轴,(0,c),最大值是C,Y随x的增大而增大,Y随x的增大而减小,在同一坐标系中作出二次函数y=3x2,y=3(x-1)2和y=3(x+1)2的图象,完成下表,并比较3x2,3(x-1)2和3(x+1)2的值,它们之间
2、有什么关系?,函数y=a(x-h)2(a0)的图象和性质,图象是轴对称图形. 对称轴是平行于 y轴的直线:x= -1.,顶点坐标 是点(-1,0).,二次函数y=3(x+1)2 与y=3x2的图象形状 相同,可以看作是抛 物线y=3x2整体沿x轴 向左平移了1 个单位.,1.函数y=3(x+1)2的图象与y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,二次项系数相同 a0,开口都向上.,想一想,二次函数y=3(x+1)2的图象的增减性会怎样?,在对称轴(直线:x=-1)左侧 (即x-1时),函数y=3(x+1)2 的值随x的增大而减少,.,顶
3、点是最低点,函数 有最小值.当x=-1时, 最小值是0.,二次函数y=3(x+1)2 与y=3x2的增减性类似.,2.x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x+1)2的值随x的增大而减少?,在对称轴(直线:x=-1)右侧 (即x-1时),函数y=3(x+1)2 的值随x的增大而增大,.,猜一猜,函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象的位置和形状. 请你总结二次函数y=a(x-h)2的图象和性质.,2.抛物线y=-3(x-1)2和y=-3(x+1)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.,3.抛物线y
4、=-3(x-1)2在对称轴(x=1)的左侧,当x1时, y随着x的增大而减小.当x=1时,函数y的值最大(是0); 抛物线y=-3(x+1)2在对称轴(x=-1)的左侧,当x-1时, y随着x的增大而减小.当x=-1时,函数y的值最大(是0).,二次函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象,4.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x轴向右平移了1个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴向左平移了1个单位.,X=-1,X=1,1.抛物线y=-3(x-1)2的顶点是(1,0);对称轴是直线:x=1;抛物线y=-3(x+1)2
5、的顶点是(-1,0);对称轴是直线:x=-1.,在同一个直角坐标系里画出函数 与 的图象.,x,y,0,-8,-6,-4,-2,2,4,6,8,20,16,12,8,4,-2,描点,连线,10,12,-10,-12,2,观察这两个函数的图象, 它们有什么关系?,x,y,0,-8,-6,-4,-2,2,4,6,8,20,16,12,8,4,-2,描点,连线,10,12,-10,-12,2,2,x,y,O,函数y= (x-2)2的图象与y= x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,二次项系数 相同 a0, 开口都向上,两个二次函数的图象 形状相同,可以看作是 抛物
6、线y= x2整体 沿x轴向右平移了2 个单位,2,x,y,O,函数y= (x-2)2的图象与y= x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,顶点坐标 是点(2,0).,图象是轴对称图形 对称轴是平行于 y轴的直线:x=2.,2,x,y,O,x取哪些值时,函数y= (x-1)2的值随x值的增大而减小?x取哪些值时,函数y= (x-1)2的值随x的增大而增大?,在对称轴(直线:x=2) 左侧(即x2时), y的值 随x的增大而减小,.,在对称轴(直线:x=2) 右侧(即x2时), y的值 随x的增大而增大,.,顶点是最低点,函数 有最小值.当x=2时, 最小值是0.
7、,函数 的图象可以看成由 的图象向_平移_个单位得到,它们的形状和开口大小相同,函数 的图象可以看成由 的图象向_平移_个单位得到,它们的形状和开口大小相同,这里的平移方向有什么规律?,右,左,2,2,1.抛物线y=a(x-h)2的顶点是(h,0),对称轴是平行于y轴的直线x=h.,3.当a0时,在对称轴(x=h)的左侧,y随着x的增大而减小;在对称轴(x=h)右侧,y随着x的增大而增大;当x=h时函数y的值最小(是0). 当a0时,在对称轴(x=h)的左侧,y随着x的增大而增大;在对称轴(x=h)的右侧,y随着x增大而减小;当x=h时,函数y的值最大(是0).,二次函数y=a(x-h)2的性
8、质,2.当a0时,抛物线y=a(x-h)2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展; 当a0时,抛物线y=a(x-h)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.,X=h,X=h,4. 越大,开口越小, 越小,开口越大.,二次函数y=a(x-h)2 与y=ax2的图象形状 相同,可以看作是抛 物线y=ax2整体沿x轴 平移了 个单位(当h0时,向右移 个单位;当h0时,向左移 个单位)得到的.,函数y=a(x-h)2(a0)的图象和性质,1.函数y=a(x-h)2(a0)的图象可 由函数y=ax2的图象平移得到. 当h0 时,向_平移_个单位 当h0 时,向_平
9、移_个单位 对称轴为:_.顶点为_,h,|h|,右,左,直线x=h,(h,0),2.当a0时,抛物线在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展; 当a0时,抛物线在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.,函数y=a(x-h)2(a0)的图象和性质,3.当a0时,在对称轴(x=h)的左侧,y随着x的增大而减小;在对称轴(x=h)右侧,y随着x的增大而增大;当x=h时函数y的值最小(是0). 当a0时,在对称轴(x=h)的左侧,y随着x的增大而增大;在对称轴(x=h)的右侧,y随着x增大而减小;当x=h时,函数y的值最大(是0).,直线x=h,二次函数y=a(x-h
10、)2的性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=a(x-h)2 (a0),y=a(x-h)2 (a0),(h,0),(h,0),直线x=h,直线x=h,在x轴的上方(除顶点外),在x轴的下方( 除顶点外),向上,向下,当x=h时,最小值为0.,当x=h时,最大值为0.,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,根据图形填表:,比一比,向上,直线x=h,(h,0),Y随x的增大而减小,最小值是0,Y
11、随x的增大而增大,向下,直线x=h,(h,0),最大值是0,Y随x的增大而增大,Y随x的增大而减小,试一试,例1. 填空题 (1)二次函数y=2(x+5)2的图像是 ,开 口 ,对称轴是 ,当x= 时,y有最 值,是 . (2)二次函数y=-3(x-4)2的图像是由抛物线y= -3x2 向 平移 个单位得到的;开口 ,对称轴是 ,当x= 时,y有最 值,是 .,抛物线,向上,直线x= -5,-5,小,0,右,4,向下,直线x= 4,4,大,0,(3)将二次函数y=2x2的图像向右平移3个单位后得到函数 的图像,其对称轴是 ,顶点是 ,当x 时,y随x的增大而增大;当x 时,y随x的增大而减小. (4)将二次函数y= -3(x-2)2的图像向左平移3个单位后得到函数 的图像,其顶点坐标是 ,对称轴是 ,当x= 时,y有最 值,是 .,y=2(x-3)2,直线x=3,(3,0),3,3,y= -3(x+1)2,(-1,0),直线x=-1,-1,大,0,试一试,(5)将函数y=3(x4)2的图象沿x轴对折后得到的函数解析式是 ;将函数y=3(x4)2的图象沿y轴对折后得到的函数解析式是 ;,y=3(x4)2,y=3(x+4)2,(6)把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册消防工程师考试消防工程案例分析专项训练试卷实战演练
- 2025年秋季英语六级写作冲刺押题模拟试卷
- 2025年造价员考试试卷 工程造价控制专项解析
- 2025年Python二级考试押题试卷 知识点全覆盖
- 民法典婚姻篇宣传课件
- 玉米增产知识培训心得体会
- 玉石鉴定师知识培训班课件
- 2025年专业车辆租赁合同保证金缴纳与租赁合规性审查服务协议
- 2025年电子信息领域知识产权运营管理专业服务协议
- 2025年度智能社区商业物业公共设施维护升级服务协议
- 仓库组织架构及岗位设置
- 机场工程造价控制重点、难点分析及应对措施
- 加油站建设项目社会稳定风险评估报告
- 苏教版二年级数学上册全册教案
- 门窗店入股合同协议书
- T/CIE 171-2023企业级固态硬盘测试规范第7部分:功耗能效测试
- 2025年采购管理专业考试题及答案
- 实验室安全操作规程
- 2025-2030中国DCS控制系统行业市场现状分析及竞争格局与投资发展研究报告
- 叉车基本技能培训课件
- 2024初级注册安全工程师笔试真题解析
评论
0/150
提交评论