桨叶可变风力发电机设计_第1页
桨叶可变风力发电机设计_第2页
桨叶可变风力发电机设计_第3页
桨叶可变风力发电机设计_第4页
桨叶可变风力发电机设计_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 可再生能源论文题目:桨叶长度可变风电机的理论猜想 与初步设计 姓 名: 张涛 学 号: 3120206016 院 系: 能源与动力工程学院 专 业: 工程热物理及节能减排 任课教师: 左然 二一五年四月十五日1、 绪论(1) 研究背景风能是一种无污染、可再生的清洁能源。早在公元前200年,人类就开始利用风能了。提水、碾米、磨面及船的助航都有风能利用的记载。自第一次世界大战之后,丹麦仿造飞机螺旋桨制造二叶和三叶高速风力发电机发电发电并网并使用直至现在,风力发电机经历了近百年的发展历程。20世纪80年代之后,世界工业发达国家率先研究、快速发展风力发电机,建设了风电场。现在风力发电机制造成本不断下

2、降,已接近水力发电机的水平,制造及使用技术也日趋成熟。20世纪末,世界每年风电装机容量已近20%的增长速度发展,风电成为世界诸能源中发展最快的能源。如果在总面积0.6%的地方安装上风力发电机,就能提供全部电力消耗的20%,可以关闭供电力20%的以燃烧煤、重油等碳氢化合物为燃料而排放、和烟尘对大气和地球环境造成污染和破坏的火电厂,这对于雾霾日益严重的当下有重大意义。(2) 国内外发展2012 年新增风电装机容量最多的10个国家占世界风电装机的87%。与2007 年相比,美国保持第1 名,中国超过西班牙从第3 名上升到第2 名,印度超过德国和西班牙从第5名升至第3 名,前3 名的国家合计新增装机容

3、量占全世界的60%4。 根据世界风能协会的统计,2012 年全世界风电装机容量新增约2726 万kW,增长率约为29%。累计达到1.21 亿kW,增长率为42%,突破1 亿kW 大关。风电总量为2600 亿kWh,占全世界总电量的比例从2000 年的0.25%增加到2012 年的1.5%。 尽管风电的发展仍然存在着很多困难,如电网适应能力、风能资源、海上风电发展等,但相比于常规能源,经济性优势逐步凸显,世界各国都对风电发展充满了信心。例如,欧美都公布了2030 年风电满足20%甚至更多电力需求的宏大目标,这也为全球风电的长期发展定下了基调。从国际能源署(IEA)2012 年颁布的2050 年能

4、源技术情景判断,2012-2050年,全球风电平均每年增加7000 万千瓦,风电将成为一个庞大的新兴电力市场。我国是世界上风力资源占有率最高的国家之一,同时也是世界上最早利用风能的国家之一。据资料统计,我国10 m 高度层风能资源总量为3226GW,其中陆上可开采风能总量为253GW,加上海上风力资源,我国可利用风力资源约为1000GW。如果风力资源开发率可达到60%,仅风电一项就可支撑我国目前的全部电力需求。我国利用风电起步较晚,和世界上风电发达国家如德国、美国、西班牙等相比还有很大差距。风电是20 世纪80 年代开始迅速发展起来的,初期研制的风机主要是1kW、10kW、55kW、220kW

5、 等小型风电机组,后期开始研发可充电型风电机组,并在海岛和风场广泛应用。(3) 发展中存在的问题风能是一种能量密度低、稳定性较差的能源。由于风速、风向随机变化,引起叶片攻角不断变化,导致风电机组的效率和功率的波动,并使传动力矩产生振荡,影响电能质量和电网稳定性。随着风电技术的发展,现在许多风电机组采用了变桨矩调节技术,其叶片的安装角可以根据风速的随机变化而改变,气流的攻角在风速变化时可保持在一个比较合理的范围内,从而有可能在很大的风速范围内保持较好的空气动力学特性,获得较高的效率,特别当风速在大于额定风速条件下,仍可保持输出功率的平稳。在变桨技术的基础上,又发展了变速恒频技术,使风机的转速可以

6、随风速的变化而变化,进一步提高了风电机组的频率。但变桨矩技术也存在着一些缺点。例如迎风变桨控制方式(使气流攻角减小)在强风时,变桨角度相对较大;而顺风变桨即主动失速(使气流攻角增大)变桨时使气流产生分离,升力减小,阻力急剧增大,从而导致风力机功率减小。因此,我们可以猜想如果风轮直径在不同的风速下可变,使其最大化的捕捉风能可能是未来风能利用的一个重大技术突破。(4) 本文的主要工作随着风轮直径的增加,风力机可以捕捉更多的风能。直径40m的风轮适用于500KW的风力机,而直径80m的风轮则可以用于2.5MW的风力机。长度超过80m的叶片已经成功运行,叶片的长度每增加1m,风力机可捕捉的风能就会显著

7、增加。和叶片的翼型一样,叶片的长度设计对提高风能的利用也有着重要作用。本文将会初步计算和讨论叶片长度可变对风力发电机功率的影响,并设计一个简单的根据风况而桨叶长度可变的风力发电系统。当风速较低时,叶片会完全伸展,以最大限度的生产电力;随着风速增大,输出电力会逐步增至风力机的额定功率,一旦风速超过这一峰值,叶片就会回缩以限制输电量;如果风速继续增大,叶片长度将会继续缩小至最短。风速自高向低变化时,叶片也会做相应调整。2、 设计方案(一)理论效率分析 当风速为时,风的动能为 (1)流过一个控制面的f的的风功率为 (2)因为流量。现根据Betz假设,风流均匀,速度为,流过风轮之后在远离风轮面后的风速

8、降为。考虑一流管,由于连续性它必须是扩张形的。 (3)由于压力变化甚微,可假设密度为常数。所提取的能量即为流入的能量减去流出的能量,即 (4)所提取的功率则为 (5)如果不降低风速(),自然得不到功率。但若风速降低太多,则流量就很小。在极端情况下(),流管堵塞,同样得不到功率。因此在和之间,必然存在一个使功率达到最大值的最佳流出速度。当已知风轮面的风速时,就可求得流量,即 (6)在此根据Froude-Rankin定理,做出合理假设,即 (7)把式(6)和式(7)代入功率表达式(5),可得到 (8)可见,可提取的功率为风功率乘以功率系数。功率系数取决于风速比,即 (9)对功率系数关于风速比求一阶

9、导数并令其为0或画出功率系数的曲线,就可求得最大功率处的风速比=1/3,即。对关于求导可得 =令=0,即 最后得到 即当时,最大,此时 故其最大值为 (10)式(10)表明,通过一个理想风机可提取约60%的风含功率。在此,风轮面的风速为,远离其后的风速为。下图给出了风速和风机直径一定时,根据Betz的理想情况,所能提取的最大功率()。由于存在一些其它损失,风力机的实际功率要比理想情况小,但=0.5完全可以实现。风轮直径可按 计算,式中发电机效率; 传动效率; 风力机的输出功率。风机叶轮的设计应保证桨叶作用的圆面上每一个环单元所吸收的风功率都达到最大,即 由Z个合理设计的桨叶来提取这个功率,并转

10、换成机械功率,得 式中,Z叶片数目; 气动力切向分量; 叶片切向速度。在设计工作点,翼型的升阻比接近最佳值,故阻力系数很小,即。因此,在切向力的表达式中,可忽略阻力影响,而仅考虑升力的作用,于是 机械功率为 令 ,则得到 由气流速度三角形得 , 并考虑到尖速比 故有 根据风机制造的要求,半径比最小约为15%,对现代风机,叶尖速比大于3,则上式简化为 确定了弦长后,还需要确定翼型的安装角度。安装角度与桨叶半径有关,即 下图为弦长t和迎风角与叶尖速比的关系。由图可见,叶尖速比越高,弦长t越小,迎风角也越小。另外,桨叶随半径r发生扭转。可以根据上述计算式,分别在不同的桨叶长度上设计不同的翼型和安装角

11、度。(2) 原理 执行器 控制器 传感器 风速 输出功率 - 扰动输入量控制系统:桨叶长度可变的风力发电机的定性功率曲线如下图所示。高于额定功率低于额定功率额定功率风速V4区:拓展模式使桨叶回缩至最短限制载荷3区:回缩桨叶抑制输出功率使其保持稳定2区:过渡区继续伸长桨叶高效率平滑过渡1区:伸长桨叶获取大的功率功率P该图被分为两个部分四个区域。两个部分分别为低于额定和高于额定功率部分。当风力发电机运行在低于额定功率区时,只产生风力发电机设计的部分功率,因此需要采取加长桨叶长度的优化策略。另一方面,当风力发电机运行在高于额定功率区时,则采取回缩桨叶长度的功率限制策略。1. 传感器:风速通常有一个安

12、装于机舱的风速计来测量。然而这种在机舱测量的风速准确度往往不足,很难被控制器采用,原因在于机舱的形状会导致风速的加速,以及风轮的转动会导致风一定的湍流,同时,单一的测量也不足以代表通过风轮表面的风速。因此,有时还会利用风速估算器来提高控制算法。2. 控制器:控制器通常为一个实时的工业控制系统,具有专用的微处理器,并通过该微处理器,并通过该微处理器运行主控软件来处理特定的控制算法。3.执行器: 控制桨叶伸长缩短的曲柄滑块机构设计 机构安装在桨叶上的位置 使用UG8.0模拟相连伸缩叶片之间的立体关系伸长桨叶的系统是一个机械、电气或者液压装置,作用在每两个相连叶片使其可以在桨叶半径方向相对运动。伸长

13、桨叶系统对风力发电机有着至关重要的作用,因为它决定着机器的安全性。伸长桨叶系统一个错误可引起风力发电机不可逆转的损坏。为避免这一情况,可通过独立伸长桨叶控制系统来保证可靠性,当某一桨叶发生故障时,另外几个桨叶能够伸长到安全半径,以确保不受损坏。3、 关于可变桨叶特点和发展的讨论(1) 特点关于风力发电机根据风况自我调节从而提取最大功率的方法有很多种,变桨矩技术,变速恒频技术,但其还存在着变桨技术存在着变桨角度过大,阻力骤增,电子器械装置结构复杂等一些缺点。桨叶可变技术通过简单的机械机构控制来实现风机功率稳定输出,方式简单,可控制性好,是未来发展的一个方向。(2) 材料的选取小型风力机的叶片常用

14、优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。有的采用玻璃纤维或其它复合材料蒙皮则效果更好。大、中型风力机使用木质叶片时,不像小型风力机上用的叶片由整块木料制作,而是用很多纵向木条胶接在一起,以便于选用优质木料,保证质量。有些木料,如叶片的翼型后缘部分可填塞质地很轻的泡沫塑料,表面再包以玻璃纤维形成整体。为了降低成本,有些中型风力机的叶片采用金属挤压件,或者利用玻璃纤维或环氧树脂抽压成型。但整个叶片无法挤压成渐缩形状,即宽度、厚度不能变化,难以达到高效率。 由于桨叶的可伸缩性,导致桨叶结构特殊化,内部为空心结构,所以要使用重量轻且强度高的材料制作。目前,风

15、机叶片所用的材料已由木质、帆布等发展成为金属(铝合金)、玻璃纤维、碳纤维增强复合材料等,其中新型玻璃钢叶片材料因为重量轻、强度高、可设计性强、价格便宜等因素,开始成为大、中型风机叶片材料的主流。(3) 可行性和未来发展在现实的应用中,风速不恒定,以及风在风轮上的时间和空间也不同。众所周知风特性的不确定性(如风廓线和湍流)可能导致严重低估风力发电机的极限载荷,如叶片、主轴、支撑塔筒、齿轮箱和传输系统载荷等,这也导致这些机械部件中的一个和多个过早的失效。所以变、可伸缩桨叶技术在现实中还需要大量的测试研究才能投入使用。4、 总结风能作为应用潜力很大的清洁可再生能源,受到了世界上许多国家的重视。目前,许多国家积极开发海上(离岸)风电场。优点是风速高、发电量大;湍流小,减少机组疲劳载荷,延长使用寿命。但其接人电力系统和机组基础成本高。海上风电场研究开发的主要课题有海底风电机组基础结构,将机组设计寿命提高到60年,第1台机组报废后,第2台机组继续使用同一个基础结构;另一个课题是开发单机容量2 0005 000 kW 的超大型风电机,我国海岸线较长,可利用的海洋风能资源丰富,开发海上风电场也是我国风力发电的一个发展方向。我国还具有广阔的草原,风能资源储备非常丰富,同时风能的发展对于解决当前较为突出的二氧化碳排放、酸雨等环保问题、缓解能源短缺的紧迫压力、实现和谐社会的目标将发挥关键作用。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论