电机噪声的抑制_第1页
电机噪声的抑制_第2页
电机噪声的抑制_第3页
电机噪声的抑制_第4页
电机噪声的抑制_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电机噪声的抑制采取措施减低电机运行时发出的各种声响。理论上考虑,电机运行时应该没有任何声响,因而电机运行中发出的任何声音都可归为电机的噪声。这些噪声包括电磁噪声、机械噪声、空气动力噪声。 电磁噪声 主要是电机中周期变化的径向电磁力或不平衡的磁拉力使铁心发生磁致伸缩和振动所引起。电磁噪声还和定子、转子本身的振动特性(如固有频率、阻尼、机械阻抗及声学特性等)有关。例如,当激振力和固有频率共振时,即使电磁力很小也会产生很大的噪声。电磁噪声的抑制可以从多方面着手。对于异步电动机,首先要选择合适的定、转子槽数。一般说来,转子槽数与定子槽数相差较大,即所谓远槽配合时,电磁噪声较小(也有少数例外,如定子24

2、槽、转子22槽也是良好配合)。对有槽电机,斜槽能使径向力沿电机轴线方向产生相位移,因此减小了轴向平均径向力,从而降低了噪声。若采用双斜槽结构,降噪效果更佳。双斜槽结构是把转子沿轴向分成两段。每段槽的扭斜方向相反。两段之间还设有中间环。为了降低磁通势谐波,可采用双层短矩绕组。并避免采用分数槽绕组。在单相电机中应采用正弦绕组。为了减小齿槽引起的电磁噪声,可采用磁性槽楔或缩小定、转子的槽口宽度直至使用闭口槽。三相电机运行时要尽可能保持电压对称,单相电机应运行于接近圆形的旋转磁场。此外,电机制造过程中,应减小定子内圆和转子外圆的椭圆度并保证定、转子同心,使气隙均匀。减小气隙磁通密度和采用较大的气隙,可

3、以降低噪声。为了避免电磁力与机壳的固有频率共振,可采用适当的弹性结构。 机械噪声 主要由转子和轴承引起。轴承是电机转子和定子的连接构件,它承受了电机中各种力的激励并传递激励力,从而产生振动和噪声。电机的电刷和滑环或换向器摩擦也会产生机械噪声。 对于转速较高或转子较长的电机,要进行动平衡校正。这种电机的轴承应采用电机专用低噪声轴承,在电机运转时,轴承的内外套圈不应发生有害的滑动,但也要防止轴承和轴或轴承和端盖轴承室配合过紧,以避免轴承径向游隙过小及轴承内外圈变形。转子轴的轴承挡和端盖轴承室的加工精度和表面光洁度要高。为了防止转子轴向窜动声,应采用波形弹簧对轴承外圈施加轴向预应力。轴承在装配前必须

4、仔细清洗。宜用热套或压内圈的方法将轴承装到轴上,并选用合适的润滑脂。低噪声电机宜用滑动轴承。 电刷和刷柄的间隙应适当设计,并保证换向器或滑环有光滑的表面和正确的几何尺寸等。 空气动力噪声 包括风扇、旋转的转子和气流沿风路流动时形成的气流噪声。降低空气动力噪声最主要的措施是控制风量。在保证电机温升不超过许可限度的范围内尽量减少风量。改进风扇的结构和合理设计风路系统都可以降低空气动力噪声。定、转子径向通风道对齐时,可能出现笛声,此时应把它们互相错开。电机振动超限值电机的允许振动值 转速/(rmin)振动值/mm转速/(rmin)振动值/mm30000.0610000.1315000.10750以下

5、0.16电机最高转速木工修边机电机转速是20000r/min自动高速机床和纺织行业,电机转速可高达2000050000r/min军用特殊电机转速高达120000r/min 电机绕组局部烧毁的原因及对策1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。 相应对策:尽量消除工艺和机械设备的跑冒滴漏现象;检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方

6、应做保护罩;对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。 2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般

7、情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。由于不同型号油脂混用造成轴承损坏。轴承本身存在制造质量问题,例如滚道锈斑、转动不灵

8、活、游隙超标、保持架变形等。备机长期不运行,油脂变质,轴承生锈而又未进行中修。 相应对策:卸装轴承时,一般要对轴承加热至80100,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。尽量避免不必要的转轴机加工及电机端盖嵌套工作。组装电机时一定要保证定、转子铁心对中,不得错位。电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。禁止多种润滑油脂混用。安装轴承前先要对轴承进行全面仔细的完好性检查。对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。 3由于绕组端部

9、较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。 相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。 4由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。 相应对策:尽量避免电动机过载运行。保证电动机洁净并通风散热良好。避免电动机频繁启动,必要时需对电机转子做动平衡试验。 5电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电

10、机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。 相应对策:尽可能避免频繁启动,特别是高压电机。保证被拖动设备和电机的振动值在规定范围内。三相电机单相运行三相异步电动机绕组接线端连接上几只电容器,可以接至“单相电源上运行。对于常见的单速三相电机,无论它是星形连接还是三角形连接,都不必拆开电动机绕组的内部接头,而只需在引线端并联电容器。 三相电机是三角形接法时,电容按图:连接;是星形接法时,电容按图2连接。图中C2为运行电容人:为启动电容。闭合开关K后接通电源,电机开始运行,当电机

11、达至!额定转速后,应通过开关K将c1断开,否则电机会发热,甚至烧坏。电容C2的容量可按下式计算:C2=1950*In/(Un*COS) (F)式中1N、UN、cos十分别是原三相电机铭牌上的额定电流、额定电压和功率因数值,若铭牌上无功率因数,cosy可取085左右。例,日某台三相异步电机铭牌上标有“A”连接,额定电压力220V,额定电流力0 85A,功率因数为0.8。则改为单相运行时工作电容C2为:C2=1950In/(Un*COS)=1950*0.85/(220*0.8)=9.42(F)取C210F。? 电容C1的容量可根据电动机启动时负载的大小来选择,通常为C2的14倍。对于功率1kw以下

12、的小电机,C1也可以去掉不用,但C2数值要适当加大。经此改接后,电机的容量根据电机运行时功率因数的大小要下降1040。? 上述电路中的电容要选纸介油浸电容或金属化电容等无极性电容器,不能用电解电容器,同时要注意其耐压值。一般地,若电机工作电压力220v,电容耐压应为400v;若电机工作电压力为380V,电容耐压应力600V左右。对于以下的小功率三相异步电动机,不仅可以作三相运行,而且也可以作单相运行。? 电动机单相运行时的连接方式? ()三相绕组的三角形连接? ? 如图所示。将电容器并接在三相绕组的任意一相两端(图中接在相两端),然后市电加在电容的一端和与的交点处。这样,电机就可旋转,如需改变

13、电机旋转方向,则可按图所示连接,将市电从电容器的一端调换到另一端即可。? ()三相绕组的星形连接? 将电容器接在任意两个端子上(如图中接、),市电则加在余下的端子和电容的任一端上。这样,电机就可旋转。如需改变电机转向,则将市电的一端从换接到端即可(如图所示)。? 电容器的容量选择? 小型三相异步电动机作单相运行时,所选电容容量一定要合适,若太小则旋转无力,启动困难;太大则回路电流过大,导致电机过热。一般电容容量值选择如附表所示。? 如果不查表,也可以按经验公式获得:当星形连接时,所需电容容量()(),的单位是,的单位是;当用作三角形连线时,所选电容容量()()。电机功率计算公式三相:P1.73

14、2UIcos U是线电压,某相电流。 一相:PUIcos U是相电压,相电流 电机转速公式N0=60F/P (同步电动机) N=N0(1-S)=60F/P(1-S) (异步电动机) 式中:F-频率;P-极对数;S-转差率 电机轴承座振动的原因 ? 功率1.6MW、转速592rmin的交流电动机驱动减速机;减速机中心距为 1400mm,采用滑动轴承支撑,齿轮副的小齿轮齿数z1=29,大齿轮齿数z2=171;减速机带动 500人字型齿轮座中轴转动;齿轮轴通过万向节带动三辊开口式型轧机运转。近年来,随着新品种相继开发和产量不断增加,500主机列生产负荷不断加大,故障也随之增加。2003年2月,140

15、0减速机高速轴发生烧瓦事故,抢修时发现轴颈磨损。更换轴瓦后,1.6MW电机轴承座出现异常振动,导致负荷端轴承座振裂。检修电机时,考虑到轴承座振动大,遂将电机轴瓦顶间隙稍稍加大。减速机高速轴受力分析表明,过钢时高速轴受到轧制力作用要上升,故在重新找正时使电机中心高出减速机中心0.15mm,以平衡减速机受力时的上浮。做此调整后电机轴承座振动仍严重,额定电流下振动较小,超过200-300A时振动相当严重,同时伴有丢转现象。振动有一定的周期性,咬钢时冲击振动增大,每次振动高峰持续3-4s。一、振动数据采集检修时多次检查电机与减速机联轴器对中性,偏差均不大于0.5rnm,因此对轴承座振动影响不大。我们用

16、武汉立德公司的数据采集器,采集电机两轴承座的振动数据,谱图如图2所示。可以看出:(1)9Hz左右的转频幅值特征明显;(2)3X、5X倍频比较明显。同时观察到振动较大或超负荷时电机发出低沉轰鸣声;在过临界转速区时振动无明显变化。二、原因分析19Hz左右的转频幅值判定为转子不平衡造成。检修时,将电机转子水平放置,调整好水平后,再旋转90检验,发现转子向下弯曲。2减速箱输人端联轴节部分间隙过大。9Hz左右的转频及其3X(28Hz)、5X(45Hz)幅值较大,是松动的特征。这是因为所用弹性柱销联轴器销孔直径50mm,而橡胶棒直径仅有46mm,因而造成配合间隙过大。3减速箱齿轮啮合间隙较大。啮合频率的带

17、宽窄,冲击能量集中,易造成齿裂。280Hz左右的频率及其2X(559Hz)幅值较大。拆检发现,齿顶间隙大,轮齿磨损。三、解决措施及效果据此决定采取以下改进措施。1对电机转子进行动平衡。2更换电机与减速机的弹性柱销联轴器,并找正。3橡胶棒的直径改为47.5mm。4调整减速机两轴,保证齿顶间隙,同时确保两轴平行。5更换电机负荷端轴承座。经解体检修减速机、电机轴瓦及人字齿轮座,更换电机轴瓦座、弹性联轴器、齿轮座中轴轴瓦和下轴瓦;对各轴瓦进行研配;调整减速机齿轮副间隙;对各联接轴找正,并对电机转子进行动平衡。修好后试车,轴承座振动消除,运行状态良好。交流异步电机振动故障诊断技术 ? 交流感应异步电机振

18、动故障诊断是通过对电机轴承振动、定子线圈电流、定子轴向磁通、转子轴电压及电流等数据的收集,应用对这些数据的分析技术,掌握电机的状态,为检修决策提供可靠依据。一、感应电机的振动故障诊断1振动故障诊断技术电机轴承处的振动信息可以判定电机的定子或转子偏心、定子或转子的铁芯短路及松动、转子条或端环缺陷、转子热弯曲、电源接头松动或断开等故障。(1)定子。电机定子故障包括定于偏心、定子铁芯短路或松动。这些故障均产生2?L(?L为电源频率)下的大振动,若切断电机电源,2?L频率下的振动立即消失。(2)转子偏心。偏心的转子可在转子与定子间产生可变气隙,从而引起脉冲振动(通常振动在听与转速的谐波频率之间人 常需

19、用细化谱分离出所与转速的谐波频率。偏心的转子产生2?L及其两侧的?P(极通过频率边带)。极通过频率本身也出现在低频处。?P常见值的范围在20-120r/min(0.3-2Hz)内,软地脚或不对中故障造成的壳体变形常会引起气隙变化。(3)转子。断裂的转子条或短路环,转子条与短路环间接触不良,或者短路的转子铁芯均产生1X转速频率的大振动及其两侧极通过频率边带。此外,还可产生二、三、四、五倍转速谐波频率两侧的极通过频率边带。转子条通过频率(即RBPF,等于转子条数转子转动频率)及其谐波频率两侧的2?L边带说明转子条存在松动或脱开情况。转子条松动和端环间的电弧常显示出很高幅值的 2RBPF且伴随2?L

20、边带,但是 1RBPF频率的振动幅值不增大。(4)电气相位故障诊断。由于松动或断裂接头的相位问题可产生2?L频率下的较大振动,且两侧伴有13 ?L的边带。2?L处的振动幅值随时间延续将变得更大。偶尔接触的故障接头问题尤为严重,必须及时处理。(5)转子热弯曲故障诊断。电机转子的热弯曲主要由电机断裂转子条、短路的铁芯等故障引起,它们在局部产生大量的热,导致转子弯曲变形,严重者可使转子与定子碰摩。转子弯曲将会产生很大的电磁力和不平衡力,生成更多的热量,使转子弯曲更为严重。转于热弯曲时,1X转速频率的振动幅值随时间延长而增大,振幅值受定子电流的影响,振动特征类似于转子不平衡。热弯曲故障明显时,同一转子

21、的两侧轴承轴向1X相位差以及同侧轴承轴向的上与下、左与右的相位差均为180。2感应电机电气故障诊断通过对电机定子电流频谱、磁通频谱、轴电压与电流分析可以诊断定子或转子故障。(1)电流故障诊断? 转子条。当转子回路出现故障时,在定子电流频谱图上,电源频率两侧将出现一个边频带(?P),转速的波动使电流以电源频率为中心,在?P上。下限之间变化。由于电机定子中三次谐波磁通的调制作用,使得转速和电流波动更加明显。由基频与边频电流幅值的比值可以推断断裂的转子条数目。转子条故障的严重程度与检修策略可参考夏洛特联合技术公司的“电动机电流分析严重程度和推荐的修正措施表”。气隙偏心。气隙偏心往往会造成振动值超限、

22、定于与转子碰擦等故障。气隙偏心分为静态偏心和动态偏心两种。静态偏心是由定子铁芯的椭圆度或装配不正确造成的;动态偏心是由转轴弯曲、轴颈椭圆、临界转速时的机械共振及轴承磨损等造成。气隙偏心在定子电流中以谐波形式反映出来,因此其特征频谱成分可以通过检测电流频谱获得。气隙偏心特征频率可依照下列公式计算式中: 为任意整数,静偏心时, =0;动偏心时, =1、2、3。 为任一整数;s为转差率,s=1-(nP)(60?1),n为电机转速(rmin),P为电机磁极对数; 为奇整数,取1,3,5。根据特征频率分量大小和变化情况,就可以确定转子在气隙中的动态位移值。(2)磁通故障诊断电机电气参数的改变将导致转子或

23、定子线圈磁场的不对称,并反映在轴向电磁频谱中。转子条的状态可通过分析电源频率两侧的极通过频率边带得到。从磁通频谱的低频可发现电源电压不平衡、匝间短路等故障。电源电压不平衡分析是对比其特征频率的变化情况;匝间短路是通过对比电源频率两侧转速频率边带的振幅变化确定的。磁通频谱的高频分析可以发现转子条或定子槽问题,具体而言是分析其通过频率的边带族变化情况。(3)轴电压及电流故障诊断转轴两端对地的电位差为轴电压,轴电压较高往往与电机设计、制造缺陷,各种故障及非正常的电源条件有关。因此,对轴电压的检测和分析能发现电机存在的缺陷,并可监视电机铁芯和绕组的劣化过程,避免轴电压击穿轴承油膜,在电机轴颈和轴瓦表面

24、电弧放电而产生蚀点,破坏轴颈和轴瓦的配合。二、实例分析1电机转子条断裂和端环裂纹故障诊断某立式凝结泵是将凝汽器集水井内凝结水输送至国热系统的关键设备,其 500kw鼠笼式电机的顶部轴承处最大振幅为170m,额定负荷时线圈温度高达? 115,比同负荷下的其它电机线圈温升高许多。(1)电流分析。图 1中,电机转速n=1493r/min,磁极数为4,极通过频率为0.466Hz和50.40Hz。依据夏洛特联合技术公司的“电机电流分析严重程度和推荐的修正措施表”,?L?P=3.1132,可以判断该电机端环存在裂纹或转子条断裂情况。(2)磁通频谱分析。图2中,电源频率两边出现了电机的极通过频率,基点磁通值

25、为? 110dB,?L?P=2.232,因此可以判断转子条或端环存在裂纹或断裂等严重故障。(3)振动频谱分析。图3中,2X两边出现多族极通过频率边带,1X、3X5X频率两侧也出现了极通过频率边带,因此可以判断电机转子条或端环存在裂纹或断裂等严重故障。永磁同步电动机在纺织行业中的应用 纺织行业中的驱动电机常用的有交流异步电动机、有刷直流电动机和永磁同步电动机(包括无刷直流电动机)三大类,它们的综合特性比较见表。 三大类电动机的综合特性比较表 机械特性 过载能力 可控性 平稳性 噪声 电磁干扰 维修性 寿命 体积 效率 成本 交流异步电动机 软 小 难 较差 较大 小 易 长 大 低 低 有刷直流

26、电动机 软 大 易 较好 大 严重 难 短 较小 高 较高 永磁同步电动机(包括无刷直流电机) 硬 大 易 好 小 小 易 长 小 高 较高 按照不同的机械的要求,电机驱动又分为定速驱动、调速驱动 1、 定速驱动 纺织行业中有大量的生产机械要求连续地以大致不变的速度单方向运行对这类机械以往大多采用三相或单相异步电动机来驱动。异步电动机成本较低,结构简单牢*,维修方便,很适合该类机械的驱动。但是,异步电动机效率、功率因数低、损耗大,而该类电机使用面广量大,故有大量的电能在使用中被浪费了。 2、 调速驱动 纺织行业中有相当多的工作机械,其运行速度需要任意设定和调节,但速度控制精度要求并不非常高。这

27、类驱动系统在纺织行业中通常采用齿轮传动,通过齿轮变换工艺的设备如:FA506 FA507环锭细纱机,FA1603气流纺,KV505牵伸加捻机等。但这些设备的机械结构比较复杂,故障率较高,维修难度大。 由于采用齿轮传动机械结构比较复杂,故障率较高,维修难度大,也就使同步电机在纺织行业的应用显得很有意义。利用同步电机的调速精度高、调速范围宽、 控制简便、效率高的特点,将原有的齿轮传动系统简化为同步电机传动,可使原有的传动系统十分简洁,更改工艺无需变换齿轮,只需修改控制器的参数就可以,由于采用同步电机传动,取消了齿轮箱,有齿轮箱产生的如漏油、齿轮磨损、等一系列问题也就迎刃而结。具体做法就是将同步电机

28、通过法兰或底座安装在传动轴附近通过同步齿形带传动。这种传动方式在环锭细纱机罗拉的传动,主轴电机的传动以及在气流纺的应用效果都很不错。下面我就以同步电机在转杯气流纺纱机中的应用为例子对同步电机在纺织行业的具体应用作一个简单的介绍。 传统的气流纺纱机车头传动系统采用一台车头电机通过皮带带动齿轮箱传动机器两侧的引纱卷绕和喂棉罗拉,现在市场销售不错的大卷装气流纺纱机为了更改工艺方便,也只是将引纱和喂棉的传动分别用两台电机传动,但仍保留齿轮箱。因此一直有一个问题无法解决,就是齿轮箱漏油,齿轮磨损,可*性差,维修不方便等问题。有许多工程师也想出了利用四台变频电机分别传动两侧的引纱和喂棉罗拉省去了齿轮箱。解

29、决了齿轮箱漏油,齿轮磨损,可*性差,维修不方便等问题,但又带来了新问题,由于异步电机存在转差,就是异步电机的转速是随着负载的变化而变化,变化幅度在纺机上经实测达3。这就造成了大纱和小纱时的纱线支数不同,而且两台相同的电机也存在转速差异。使左右侧的纱线支数差异较大,影响了产品的质量。 气流纺纱机对电气传动的要求可以概括为:三高和一少。: 高同步性(一台纺纱机不同纺位的电机转速要求横向转速一致,纵向比例同步); 高精确性(转速稳定,精确度); 高可*性(至少保证一年安全连续运行8000h)。 少维修或免维修。 由于同步电动机转速精度仅决定于供电频率精度,与负荷变化无关。为了保证纤维的纤度均匀,采用

30、了高精度的变频调速器和永磁式同步电动机,无需采用闭环控制,就可以保证电机转速精度达到0.10.01水平。因此很好的解决了气流纺纱机对电气传动的要求高的难题。 控制回路图 永磁同步电动机与变频器的配合中,关键是个压频比的问题。通用变频器根据不同的电机特性可以设置不同的压频比。在实践中发现,当电机不在自己的运行曲线下,电机将发生下列现象(1)不能启动;(2)电流增大;(3)噪音;(4)振动;(5)温升过高等问题,一定要认真设置。 我门在一家纺织企业经过实际测试在引纱变频频率为40.1HZ时,采用异步电机传动和采用同步电机传动进行了对比,结果见下表。 电机类型 左侧引纱空载 右侧引纱空载 左侧引纱带负载 右侧引纱带负载 同步电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论