28.2解直角三角形.ppt_第1页
28.2解直角三角形.ppt_第2页
28.2解直角三角形.ppt_第3页
28.2解直角三角形.ppt_第4页
28.2解直角三角形.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、28.2解直角三角形,问题 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角,一般要满足500750.现有一个长6m的梯子.问,(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m),(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角等于多少(精确到10)这时人是否能够安全使用这个梯子?,对于问题(1),当梯子与地面成的角为750时,梯子顶端与地面的距离是使用这个梯子所以攀到的最大高度.,问题(1)可以归结为:在RtABC中,己知A=750,斜边AB=6,求A的对边BC的长.,因此使用这个梯子能够安全攀到墙面的最大高度约为5.8m.,问题 要想使人安全地攀上斜靠在墙面上

2、的梯子的顶端,梯子与地面所成的角,一般要满足500750.现有一个长6m的梯子.问,(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角等于多少(精确到10)这时人是否能够安全使用这个梯子?,对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角的问题,可以归结为在RtABC中,己知AC=2.4,斜边AB=6,求锐角的度数.,因此当梯子底端距离墙面2,4m时,梯子与地面所成的角大约是660.,由500660750可知,这时使用这个梯子是安全的.,在RtABC的中, (1)根据A=750,斜边AB=6,你能求出这个直角三角莆的其他元素吗? (2)根据AC=2.4,斜边AB=6,你能

3、求出这个直角三角形的其他元素吗?,探究,三角形有六个元素,分别是三条边和三个内角.,事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.,在直角三角形中,由己知元素求未知元素的过程,就是解直角三角形.,灵活变换:,同角之间的三角函数的关系,3.如图,在RtABC中,C=900,A,B,C的对边分别是a,b,c. 求证:sin2A+cos2A=1,同角之间的三角函数的关系,3.如图,在RtABC中,C=900,A,B,C的对边分别是a,b,c. 求证:tanAcotA=1,同角之间的三角函数的

4、关系,平方和关系:,商的关系:,倒数关系:,例2 如图,在RtABC中, B=350,b=20,解这个直角三角形(精确到0.1),现在我们来本章引言提出的有关比萨斜塔倾斜的问题.,先看1972年的情形,设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C.在RtABC中, C=900,BC=5.2m,AB=54.5m.,类似地,可以求出2001年纠偏后塔身中心线与垂直中心线的夹角,你愿意试着计算一下吗?,练习,在RtABC中, C=900,根据下列条件解直角三角形.,(1)a=30,b=20;,(2) B=720,c=14.,例3 2003年10月15日”神

5、舟”5号载人舰天飞机发射成功.当飞船完成变轨后,就在离地球表面的350km圆形轨道上运行,如图,当飞船运行到地球表面上P点的正上方时,从飞船最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径为6400km,结果精确0.1km),分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.,在解决例3的问题时,我们综合运用了圆和解直角三形的知识.,解:在图中,FQ是O的切线, FOQ是直角三角形.,由此可知,当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km.,例3 2003年10月15日”神舟”5号载人舰天飞机发射成功.当飞船完成变

6、轨后,就在离地球表面的350km圆形轨道上运行,如图,当飞船运行到地球表面上P点的正上方时,从飞船最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径为6400km,结果精确0.1km),例4 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为300,看这栋高楼底串联的俯角为600,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)?,分析:我们知道,在视线与水平线所成的角中,视线在水平线上方的仰角,视线在水平下方的是俯角,因此,在图中,=300,=600.,在RtABD中,=300,AD=120,所以可以利用解直角三角形的知识求出BD,类似地可

7、以求出CD,进而求出BC.,答:这栋楼高约为277.1m.,例4 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为300,看这栋高楼底串联的俯角为600,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)?,练习,1.建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部a的仰角为540,观察底部B的仰部的仰角为450,求旗杆的高度(精确到0.1m).,2.如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取ABD=1400,BD=520m, d=500,那么开挖点E离D多远正好能A,C,E使成一直线,(精确到0.1m)?,例5.

8、如图,一般海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东340方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?,因此,当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔大约130.23海里.,解直角三角形有文泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角和大坝的坡面长度l,就能算出h=lsin,但是,当我们要测理如图所示的山高h时,问题就不那么简单 了,这时由于不能很方便函地得到仰角和山坡长度l.,与测坝高相比,测山高的困难在于,坝坡是”直”的

9、而山坡是”曲”的,怎样解决这样的问题呢?,我们设法”化曲为直,以直代曲”.我们可以把山坡”化整为零”地划分为一些小段,图中表示其中一部分小段,划分小段时,注意使每一小段上的山坡的是”直”的,可以量出这段坡长li,测出相应的仰角1,这样就可以算出这段山坡的高度hi=lisini.,上面的方面分别算出各段山坡的高度h1,h2,hn,然后我们再”积零为整”把h1,h2,hn,相加,于是得到山高h.,以上解决问题所用的”化整为零,积零为整”化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.,1.海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东600方向上,航行12海里到达D点,这时测得小岛A在北偏东300方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?,2.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:,(1)坡度和;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论