版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十讲 概率图模型导论 Chapter 10 Introduction to Probabilistic Graphical Models,Weike Pan, and Congfu Xu panweike, Institute of Artificial Intelligence College of Computer Science, Zhejiang University October 12, 2006,浙江大学计算机学院人工智能引论课件,References,An Introduction to Probabilistic Graphical Models. Michael I. J
2、ordan. /jordan/graphical.html,Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insights of PGM,Outline,Preparations PGM “is” a universal model Different thoughts of machine learning Different training approaches Different data types Bayes
3、ian Framework Chain rules of probability theory Conditional Independence Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insights of PGM,Different thoughts of machine learning,Statistics (modeling uncertainty, detailed information) vs. Logics (modeling complexity, high level informa
4、tion) Unifying Logical and Statistical AI. Pedro Domingos, University of Washington. AAAI 2006. Speech: Statistical information (Acoustic model + Language model + Affect model) + High level information (Expert/Logics),Different training approaches,Maximum Likelihood Training: MAP (Maximum a Posterio
5、ri) vs. Discriminative Training: Maximum Margin (SVM) Speech: classical combination Maximum Likelihood + Discriminative Training,Different data types,Directed acyclic graph (Bayesian Networks, BN) Modeling asymmetric effects and dependencies: causal/temporal dependence (e.g. speech analysis, DNA seq
6、uence analysis) Undirected graph (Markov Random Fields, MRF) Modeling symmetric effects and dependencies: spatial dependence (e.g. image analysis),PGM “is” a universal model,To model both temporal and spatial data, by unifying Thoughts: Statistics + Logics Approaches: Maximum Likelihood Training + D
7、iscriminative Training Further more, the directed and undirected models together provide modeling power beyond that which could be provided by either alone.,Bayesian Framework,What we care is the conditional probability, and its is a ratio of two marginal probabilities.,A posteriori probability,Like
8、lihood,Priori probability,Class i,Normalization factor,Observation,Problem description Observation Conclusion (classification or prediction),Bayesian rule,Chain rules of probability theory,Conditional Independence,Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM
9、Insights of PGM,PGM,Nodes represent random variables/states The missing arcs represent conditional independence assumptions The graph structure implies the decomposition,Directed PGM (BN),Representation,Conditional Independence,Probability Distribution,Queries,Implementation,Interpretation,Probabili
10、ty Distribution,Definition of Joint Probability Distribution,Check:,Representation,Graphical models represent joint probability distributions more economically, using a set of “local” relationships among variables.,Conditional Independence (basic),Assert the conditional independence of a node from i
11、ts ancestors, conditional on its parents.,Interpret missing edges in terms of conditional independence,Conditional Independence (3 canonical graphs),Classical Markov chain “Past”, “present”, “future”,Common cause Y “explains” all the dependencies between X and Z,Marginal Independence,Common effect M
12、ultiple, competing explanation,Conditional Independence,Conditional Independence (check),One incoming arrow and one outgoing arrow,Two outgoing arrows,Two incoming arrows,Check through reachability,Bayes ball algorithm (rules),Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Un
13、directed PGM Insights of PGM,Undirected PGM (MRF),Representation,Conditional Independence,Probability Distribution,Queries,Implementation,Interpretation,Probability Distribution(1),Clique A clique of a graph is a fully-connected subset of nodes. Local functions should not be defined on domains of no
14、des that extend beyond the boundaries of cliques. Maximal cliques The maximal cliques of a graph are the cliques that cannot be extended to include additional nodes without losing the probability of being fully connected. We restrict ourselves to maximal cliques without loss of generality, as it cap
15、tures all possible dependencies. Potential function (local parameterization) : potential function on the possible realizations of the maximal clique,Probability Distribution(2),Maximal cliques,Probability Distribution(3),Joint probability distribution Normalization factor,Boltzman distribution,Condi
16、tional Independence,Its a “reachability” problem in graph theory.,Representation,Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insights of PGM,Insights of PGM (Michael I. Jordan),Probabilistic Graphical Models are a marriage between probability theory and grap
17、h theory. A graphical model can be thought of as a probabilistic database, a machine that can answer “queries” regarding the values of sets of random variables. We build up the database in pieces, using probability theory to ensure that the pieces have a consistent overall interpretation. Probability theory also justifies the inferential machinery that allows the pieces to be put together “on the fly” to answer the quer
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州遵义赤水市社会福利院招聘2人备考题库及答案详解(新)
- 2025年12月广东深圳市大鹏新区葵涌办事处招聘编外人员3人备考题库及1套参考答案详解
- 2025湖南楚秀人才人力资源测评有限公司招聘5人备考题库及完整答案详解一套
- 2025福建省足球运动管理中心专职青训总监(编外合同制)招聘1人备考题库(含答案详解)
- 2026云南大学附属中学西山学校招聘50人备考题库有完整答案详解
- 心境障碍与护理
- 支气管异物术后的护理
- 糖尿病预防中的家庭参与模式
- 糖尿病运动性疲劳的评估与预防策略
- 糖尿病足高危足的个体化鞋垫与防护方案-1
- GB/T 3183-2025砌筑水泥
- 煅白制备工安全宣教考核试卷含答案
- 2025年湖南省公务员录用考试《申论》真题(县乡卷)及答案解析
- 《经典常谈》分层作业(解析版)
- 粉尘清扫安全管理制度完整版
- 云南省2025年高二上学期普通高中学业水平合格性考试《信息技术》试卷(解析版)
- 2025年山东青岛西海岸新区“千名人才进新区”集中引才模拟试卷及一套完整答案详解
- 四川省成都市树德实验中学2026届九年级数学第一学期期末监测试题含解析
- 与业主沟通技巧培训
- 办公设备维护保养合同
- 普惠托育服务机构申请表、承诺书、认定书
评论
0/150
提交评论