LED热阻计算方法_第1页
LED热阻计算方法_第2页
LED热阻计算方法_第3页
LED热阻计算方法_第4页
LED热阻计算方法_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、LED 热 阻 计 算 方 法随着 LED 超高亮度的出现及 LED 色彩的丰富,LED 的应用也由最初的指示扩展到交通、大屏幕显示、汽车刹车灯、转向灯、工程建筑装饰灯、特种照明领域并正在向普通照明积极推进。阻碍这一发展的最大敌害是 LED 的热量管理,因此从事热阻、结温、热参数匹配等问题的研究和改进具有深远的意义。如何降低 LED 的热阻、结温,使 PN 结产生的热量能尽快的散发出去,不仅可提高产品的发光效率,提高产品的饱和电流,同时也提高了产品的可靠性和寿命。据有关资料分析,大约70的故障来自 LED 的温度过高,并且在负载为额定功率的一半的情况下温度每升高 200C 故障就上升一倍。为了

2、降低产品的热阻,首先封装材料的选择显得尤为重要,包括晶片、金线,硅胶、Epoxy、粘结胶等,各材料的热阻要低即要求导热性能好;其次结构设计要合理,各材料间的导热性能和膨胀系数要连续匹配。避免导热通道中产生散热瓶颈或因封装物质的膨胀或收缩产生的形变应力,使欧姆接触、固晶界面的位移增大,造成 LED 开路和突然失效。目前测量半导体器件工作温度及热阻的主要方法有:红外微象仪法,电压参数法,还有光谱法,光热阻扫描法及光功率法。其中电压法测量 LED 热阻最常用。一LED 热的产生、传导和疏散与传统光源一样,半导体发光二极管(LED)在工作期间也会产生热量,其多少取决于整体的发光效率。在外加电能量作用下

3、,电子和空穴的辐射复合发生电致发光,在 P-N 结附近辐射出来的光还需经过晶片(chip)本身的半导体介质和封装介质才能抵达外界(空气)。综合电流注入效率、辐射发光量子效率、晶片外部光取出效率等,最终大概只有 30-40的输入电能转化为光能,其余 60-70的能量主要以非辐射复合发生的点阵振动的形式转化热能。而晶片温度的升高,则会增强非辐射复合,进一步消弱发光效率。大功率 LED 一般都有超过 1W 的电输入功率,其产生的热量相当可观,解决散热问题乃当务之急。通常来说,大功率 LED 照明光源需要解决的散热问题涉及以下几个环节:1. 晶片 PN 结到外延层 ;2. 外延层到封装基板 ;3. 封

4、装基板到外部冷却装置再到空气。这三个环节构成大功率 LED 光源热传导的主要通道,热传导通道上任何薄弱环节都会使热导设计毁于一旦。热的传播方式可分为三种:(1)传导热量是通过逐个原子传递的,所以不能采用高热阻的界面材料;(2)对流热量通过流转的介质(空气、水)扩散和对流,从散热器传递到周围环境中去,故不要限制或阻止对流;(3 )辐射热量依靠电磁波经过液体、气体或真空传递。对大功率 LED 照明光源而言传导方式起最主要的作用,为了取得好的导热效果,三个导热环节应采用热导系数高的材料,并尽量提高对流散热。二大功率 LED 热阻的计算1.热阻是指热量传递通道上两个参点之间的温度差与两点间热量传输速率

5、的比值:RthT/qx(1)其中:Rth=两点间的热阻(/W 或 K/W),T=两点间的温度差(),qx=两点间热量传递速率(W)。2. 热传导模型的热阻计算RthL/S(2)其中: L 为热传导距离(m),S 为热传导通道的截面积(m2), 为热传导系数(W/mK)。越短的热传导距离、越大的截面积和越高的热传导系数对热阻的降低越有利,这要求设计合理的封装结构和选择合适的材料。3. 大功率 LED 的热阻计算(1) 根据公式(1),晶片上 P-N 结点到环境的总热阻:Rthja = Tja/Pd = (Tj-Ta)/Pd其中: Pd = 消散的功率(W)正向电流 If * 正向电压 Vf, T

6、ja=Tj-Ta= 结点温度 - 环境温度 。(2)设定晶片上 P-N 结点生成的热沿着以下简化的热路径传导:结点热沉铝基散热电路板空气/环境(见图 1),则热路径的简化模型就是串联热阻回路,如图 2 表示: P-N 结点到环境的总热阻:Rthja = Rthjs + Rthsb + Rthba图 2 中所示散热路径中每个热阻抗所对应的元件介于各个温度节点之间,其中:Rthjs(结点到热沉) 晶片半导体有源层及衬底、粘结衬底与热沉材料的热阻;Rthsb(热沉到散热电路板) 热沉、连结热沉与散热电路板材料的热阻;Rthba(散热电路板到空气/环境) 散热电路板、表面接触或介于降温装置和电路板之间

7、的粘胶和降温装置到环境空气的组合热阻。根据公式(2),如果知道了个材料的尺寸及其热传导系数,可以求出以上各热阻,进而求得总热阻 Rthja。以下是几种常见的 1W 大功率 LED 的热阻计算:以 Emitter(1mm1mm 晶片)为例,只考虑主导热通道的影响,从理论上计算 P-N 结点到热沉的热阻 Rthjs。A、正装晶片/共晶固晶B、正装晶片/银胶固晶C、si 衬底金球倒装焊晶片/银胶固晶(见图 3 所示)图 3 倒装焊晶片/银胶固晶 大功率 LED 剖面图三、大功率 LED 热阻的测量1. 原理半导体材料的电导率具有热敏性,改变温度可以显著改变半导体中的载流子的数量。禁带宽度通常随温度的

8、升高而降低,且在室温以上随温度的变化具有良好的线性关系,可以认为半导体器件的正向压降与结温是线性变化关系:Vf=kTj(K:正向压降随温度变化的系数)则从公式(1)及其推导可知,大功率 LED 的热阻(结点到环境)为:RthjaVf /(K*Pd )式中, Pd热消散速率,目前约有 6070的电能转化为热能,可取 Pd0.65*If*Vf 计算。只要监测 LED 正向压降 Vf 的改变,便可以求得 K 值并算出热阻。2. 测量系统热阻测试系统如图 4,要求测试中采用的恒温箱控温精度为1,电压精度 1mv。图中 R1 是分流电阻,R2 用来调整流过 LED 的电流大小,通过电阻 R1、R2 和恒

9、流源自身的输出调节,可以精确控制流过 LED 的电流大小,保证整个测试过程中流过 LED 的电流值恒定。3. 测试过程(1)测量温度系数 K:a. 将 LED 置于温度为 Ta 的恒温箱中足够时间至热平衡,此时 Tj1= Ta ;b. 用低电流(可以忽略其产生的热量对 LED 的影响,如 If = 10mA)快速点测 LED 的 Vf1;c. 将 LED 置于温度为 Ta(TaTa)的恒温箱中足够时间至热平衡,Tj2=Ta;d. 重复步骤 2,测得 Vf2;e. 计算 K:K(Vf2-Vf1)/(Tj2-Tj1)(Vf2-Vf1)/( Ta- Ta)(2)测量在输入电功率加热状态下的变化:a.

10、 将 LED 置于温度为 Ta 的恒温箱中,给 LED 输入额定 If 使其产生自加热;b. 维持恒定 If 足够时间至 LED 工作热平衡,此时 Vf 达至稳定,记录 If ,Vf;c. 测量 LED 热沉温度(取其最高点)Ts;d. 切断输入电功率的电源,立即(10ms)进行(1)之 b 步骤,测量 Vf3。(3)数据处理:Vf Vf3Vf1,取 Pd0.65*If*Vf 计算:RthjaVf/(K*Pd)Rthsa(TsTa)/Pd(TsTa)/(0.65*IF*Vf)RthjsRthjaRthsa四、讨论1. Tj (P-N 结点温度)一般而言,温度会影响 P-N 结禁带宽度,结点温度

11、升高造成禁带宽度变窄,使得发光波长偏移,并引发更多的非可见光辐射导致发光效率降低。另外,晶片温度过高会对晶片粘结胶及四周的保护胶造成不良影响,加快其老化速度,甚至可能引起失效。Lumileds 公司提出的失效计算公式如下:其中, 是结点温度为 T2 时的失效概率, 是结点温度为 T1 时的失效概率,EA 0.43eV,K8.617*10-5 eV/K。根据此公式,失效概率随着 Tj 的升高会愈来愈槽糕。大功率 LED 产品的最高结点温度(Tjmax)的高低主要取决于晶片的性能,若是封装材料受温度限制则 Tjmax 需适当降低,通常 Tjmax 不能大于 125。但是,随着晶片技术的进步和封装技

12、术的提高,目前可见到的 K2 系列产品之 Tjmax 已经能达到 150。1. 计算、测量热阻的意义1)为 LED 封装散热设计提供理论和实践依据a. 选择合适的晶片:对晶片不能只要求出光效率高,必需针对制程中解决散热的能力采用足够高 Tjmax 的晶片。在实践中我们发现,某些种类的晶片只经过 24H 老化就有较大衰减,这与其耐高温性能比较差相关。b. 评估/选择支架、散热铝基板:依 Rthsa 或 Rthba 作为目标值,查对物料供应商提供的物料资料并计算其热阻,剔除不合要求的物料。通过试样,测试、对比不同物料的热阻,可做到择优而用。C. 评估粘结胶及其效果:一般使用到的晶片粘结胶是银胶或锡

13、膏,热沉与散热铝基电路板间的结合胶是导热硅胶或其它散热胶,胶体的导热系数、胶的厚度、结合面的质量制约热阻的大小。粘结胶是否合适,必需通过实验,测得热阻作为评估结论的判断依据之一。2) 推测 Tj通过热阻等参数可以推测 Tj,进而可以与设定的 Tjmax 比较,检验 Tj 是否符合要求。晶片温度与产品失效概率密切相关,在知悉某 Tj 时的失效概率的情况下,可以求得产品在推测出来的 Tj 时的失效概率。3) 评估 LED 工作时可能遭遇的最高环境温度设定 Tjmax 后,相应地可以导出环境温度的最高值。为了保证产品的信赖性,大功率 LED 产品应给出散热铝基电路板的表面最高温度或环境(空气)温度以指导下游应用产品的开发。2. 在大功率 LED 的应用中改善热量处理前面提到大功率 LED 的 P-N 结温(Tj)过高会引起发光衰减、使用寿命缩短、波长漂移等问题,为保证 Tj 低于 Tjmax,要求合理设计二次散热结构,并计算最大输入功率、大功率 LED 应用产品的环境温度。设计大功率 LED 应用产品时,应尽量选择导热性较好的材料并设计散热通道,减少热阻薄弱环节。使用过程中,对于 Ta 较高的环境,在无法减小热阻的情况下,可适当降低输入电功率,即减少 Pd 值,牺牲亮度以保证信赖性。五、总结通过对大功率 LED

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论