会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

外文翻译--关于装载适应性神经模糊系统的有两足行走的机器人的零刻点弹道造型 英文版.doc

  • 资源星级:
  • 资源大小:2.40MB   全文页数:15页
  • 资源格式: DOC        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--关于装载适应性神经模糊系统的有两足行走的机器人的零刻点弹道造型 英文版.doc

ZeromomentpointtrajectorymodelingofabipedwalkingrobotusinganadaptiveneurofuzzysystemD.Kim,S.J.SeoandG.T.ParkAbstractAbipedalarchitectureishighlysuitableforarobotbuilttoworkinhumanenvironmentssincesucharobotwillfindavoidingobstaclesarelativelyeasytask.However,thecomplexdynamicsinvolvedinthewalkingmechanismmakethecontrolofsucharobotachallengingtask.ThezeromomentpointZMPtrajectoryintherobotsfootisasignificantcriterionfortherobotsstabilityduringwalking.IftheZMPcouldbemeasuredonlinethenitbecomespossibletocreatestablewalkingconditionsfortherobotandherealsostablycontroltherobotbyusingthemeasuredZMP,values.ZMPdataismeasuredinrealtimesituationsusingabipedwalkingrobotandthisZMPdataisthenmodelledusinganadaptiveneurofuzzysystemANFS.Naturalwalkingmotionsonflatlevelsurfacesandupanddowna10°slopearemeasured.ThemodellingperformanceoftheANFSisoptimizedbychangingthemembershipfunctionsandtheconsequentpartofthefuzzyrules.TheexcellentperformancedemonstratedbytheANFSmeansthatitcannotonlybeusedtomodelrobotmovementsbutalsotocontrolactualrobots.1IntroductionThebipedalstructureisoneofthemostversatilesetupsforawalkingrobot.Abiped,robothasalmostthesamemovementmechanismsasahumananditabletooperateinenvironmentscontainingstairs,obstaclesetc.However,thedynamicsinvolvedarehighlynonlinear,complexandunstable.Thus,itisdifficulttogenerateahumanlikewalkingmotion.Therealisationofhumanlikewalkingrobotsisanareaofconsiderableactivity1–4.Incontrasttoindustrialrobotmanipulators,theinteractionbetweenawalkingrobotandthegroundiscomplex.TheconceptofazeromomentpointZMP2hasbeenshowntobeusefulinthecontrolofthisinteraction.ThetrajectoryoftheZMPbeneaththerobotfootduringawalkisaftertakentobeanindicationofthestabilityofthewalk1–6.UsingtheZMPwecansynthesisethewalkingpatternsofbipedrobotsanddemonstrateawalkingmotionwithactualrobots.Thus,theZMPcriteriondictatesthedynamicstabilityofabipedrobot.TheZMPrepresentsthepointatwhichthegroundreactionforceistakentooccur.ThelocationoftheZMPcanbecalculatedusingamodeloftherobot.However,itispossiblethattherecanbealargeerrorbetweentheactualZMPvalueandthecalculatedvalue,duetodeviationsinthephysicalparametersbetweenthemathematicalmodelandtherealmachine.Thus,theactualZMPshouldbemeasuredespeciallyifitistobeusedinatoparametersacontrolmethodforstablewalking.InthisworkactualZMPdatatakenthroughoutthewholewalkingcycleareobtainedfromapracticalbipedwalingrobot.Therobotwillbetestedbothonaflatfloorandalsoon10slopes.AnadaptiveneurofuzzysystemANFSwillbeusedtomodeltheZMPtrajectorydatatherebyallowingitsusetocontrolacomplexrealbipedwalkingrobot.2Bipedwalkingrobot2.1DesignofthebipedwalkingrobotWehavedesignedandimplementedthebipedwalkingrobotshowninFig.1.Therobothas19joints.ThekeydimensionsoftherobotarealsoshowninFig.1.Theheightandthetotalweightareabout380mmand1700gincludingbatteries,respectively.Theweightoftherobotisminimisedbyusingaluminiuminitsconstruction.EachjointisdrivenbyaRCservomotorthatconsistsofaDCmotor,gearsandasimplecontroller.EachoftheRCservomotorsismountedinalinkedstructure.Thisstructureensuresthattherobotisstablei.e.willnotfalldowneasilyandgivestherobotahumanlikeappearance.AblockdiagramofourrobotsystemisshowninFig.2.Outrobotisabletowalkatarateofonestep48mmevery1.4sonaflatfloororanshallowslopes.ThespecificationsoftherobotarelistedinTable1.ThewalkingmotionsoftherobotareshowninFigs.3–6.Figures3and4areshowfrontandsideviewsoftherobot,respectivelywhentherobotisonaflatsurface.Figure5isasnapshotoftherobotwalkingdownaslopewhereasFig.6isasnapshotoftherobotwalkingupaslope.ThelocationsofthejointsduringmotionareshowninFig.7.ThemeasuredZMPtrajectoryisobtainedfromtendegreeoffreedomDOFdataasshowninFig.7.TwodegreesoffreedomareassignedtothehipsandanklesandoneDOFtoeachknee.Usingthesejointangles,acyclicwalkingpatternhasbeenrealised.Ourrobotisabletowalkcontinuouslywithoutfallingdown.ThejointanglesinthefourstepmotionofourrobotaresummarisedintheAppendix.2.2ZMPmeasurementsystemTheZMPtrajectoryinarobotfootisasignificantcriterionforthestabilityofthewalk.Inmanystudies,ZMPcoordinatesarecomputedusingamodeloftherobotandinformationfromtheencodersonthejoints.However,weemployedamoredirectapproachwhichistousedatameasuredusingsensorsmountedontherobotsfeet.Thedistributionofthegroundisreactionforcebeneaththerobotsfootiscomplicated.However,atanypointPonthesoleofthefoottothereactioncanberepresentedbyaforceNandmomentM,asshowninFig.8.TheZMPissimplythecentreofthepressureofthefootontheground,andthemomentappliedbythegroundaboutthispointiszero.Inotherwords,thepointPonthegroundisthepointatwhichthenetmomentoftheinertialandgravityforceshasnocomponentalongtheaxesparalleltotheground1,7.Figure9illustratestheusedsensorsandtheirplacementonthesoleoftherobotsfoot.ThetypeofforcesensorusedinourexperimentsisaFlexiForceA201sensor8.Theyareattachedtothefourcornersoftheplatethatconstitutesthesoleofthefoot.SensorsignalsaredigitisedbyanADCboard,withasamplingtimeof10ms.Measurementsarecarriedoutinrealtime.Thefootpressureisobtainedbysummingtheforcesignals.UsingthesensordataitiseasytocalculatetheactualZMPvalues.TheZMPsinthelocalfootcoordinateframearecomputedusing1.Whereeachfiistheforceatasensorriisthesensorpositionwhichisavector.ThesearedefinedinFig.10.Inthefigure,Oistheoriginofthefootcoordinateframewhichislocatedatthelowerlefthandcornertheleftfoot.ExperimentalresultsareshowninFigs.11–16.Figures11,13and15showthexcoordinateandycoordinateoftheactualZMPpositionsforthefourstepmotionoftherobotwalkingonaflatfloorandalsodownandupaslopeof10,respectively.Figures12,14and16showntheZMPtrajectoryoftheonestepmotionoftherobotusingtheactualZMPpositionsshowninFigs.11,13and15.Asshowninthetrajectories,theZMPsexistinarectangulardomainshownbyasolidline.Thus,thepositionsoftheZMPsarewithintherobotsfootandhencetherobotisstable.3ZMPtrajectorymodellingInmanyscientificproblemsanessentialsteptowardstheirsolutionistoaccomplishthemodellingofthesystemunderinvestigation.Theimportantroleofmodellingistoestablishempiricalrelationshipsbetweenobservedvariables.Thecomplexdynamicsinvolvedinmakingarobotwalkmakethecontroloftherobotcontrolachallengingtask.However,ifthehighlynonlinearandcomplexdynamicscanbecloselyproducedthenthismodellingcanbeusedinthecontroloftherobot.Inaddition,modelling,canevenbeusedinrobustintelligentcontroltominimisedisturbancesandnoise.3.1ANFSFuzzymodellingtechniqueshavebecomeanactiveresearchareainrecentyearsbecauseoftheirsuccessfulapplicationtocomplex,illdefinedanduncertainsystemsinwhichconventionalmathematicalmodelsfailtogivesatisfactoryresults9.InthislightweintendtouseasystemtomodeltheZMPtrajectory.Thefuzzyinferencesystemisapopularcomputingframeworkthatisbasedontheconceptsoffuzzysettheory,fuzzyifthenrules,andfuzzyreasoning.WewillusetheSugenofuzzymodelinwhichsinceeachrulehasacrispoutput,theoveralloutputisobtainedviaaweightedaverage,thusavoidingthetimeconsumingprocessofdefuzzification.Whenweconsiderfuzzyrulesinthefuzzymodel,theconsequentpartcanbeexpressedbyeitheraconstantoralinearpolynomial.ThedifferentformsofpolynomialsthatcanbeusedinthefuzzysystemaresummarisedinTable2.Themodellingperformancedependsonthetypeofconsequentpolynomialusedinthemodelling.Moreover,wecanexploitvariousformsofmembershipfunctionsMFs,suchastriangularandGaussian,forthefuzzysetinthepremisepartofthefuzzyrules.Theseareanotherfactorthatcontributestotheflexibilityoftheproposedapproach.ThetypesofthepolynomialareasfollowsAblockdiagramofthemodellingsystemisshowninFig.17.Theproposedmethodisfirstusedtomodelandthencontrolapracticalbipedwalkingrobot.Toobtainthefuzzyrulesforthefuzzymodellingsystemwemustnotesthatthenonlinearsystemtobeidentifiedisabipedwalkingrobotwithteninputvariablesandeachinputvariableshastwofuzzysets,respectively.Forthefuzzymodel,theifthenrulesareasfollowswhereAi,Bi,,,,Jiinthepremisepartoftheruleshavelinguisticvaluessuchassmallorbigassociatedwiththeinputvariable,x1,x2,,x10respectively.Fjx1,x2,,x10istheconstant,orfirstorderconsequentpolynomialfunctionforthejthrule.AsdepictedinFig.18,twotypesofMFswereexamined.OneisthetriangularandtheotherisGaussian.Figure19isanadaptiveneurofuzzyinferencesystem10architecturethatisequivalenttotheteninputfuzzymodelconsideredhere,inwhicheachinputisassumedtohaveoneofthetwoMFsshowninFig.18.NodeslabelledPgivetheproductofalltheincomingsignalsandtheselabelledNcalculatetheratioofacertainrulesfiringstrengthtothesumofalltherulesfiringstrengths.ParametervariationinANFISisoccuredusingeitheragradientdescentalgorithmorarecursiveleastsquaresestimationalgorithmtoadjustboththepremiseandconsequentparametersiteratively.However,wedonotusethecomplexhybridlearningalgorithmbutinsteadusethegeneralleastsquaresestimationalgorithmandonlydeterminethecoefficientsintheconsequentpolynomialfunction.3.2SimulationresultsApproximatelymodelswereconstructedusingtheANFS.ThenaccuracywasquantifiedintermsoftheremeansquarederrorMSE,values.TheANFSwasappliedtomodeltheZMPtrajectoryofabipedwalkingrobotusingdatameasuredfromoutrobot.TheperformanceoftheANFSwasoptimisedbywaryingtheMFandconsequenttypeinthefuzzyrule.ThemeasuredZMPtrajectorydatafromourrobotshowninFigs.32–41AintheAppendixareusedastheprocessparameters.WhentriangularandGaussianMFsareusedinthepremisepartandaconstantintheconsequentpartthen,thecorrespondingMSEvaluesarelistedinTable3.WehaveplattedourresultsinFigs.20–25.ThegeneratedZMPpositionsfromtheANFSareshowninFigs.20,22and24foraflatlevelfloor,walkingdowna10slopeandwalkingupa10slope,respectively.InFigs.21,23and25,wecanseethecorrespondingZMPtrajectorieswhicharegeneratedfromtheANFS.Forsimplicity,theprocessparameterofbothkneescanbeignored.Asaresult,wecanreducethedimensionofthefuzzyrulesandtherebylowerthecomputationalburden.InthiscasethesimulationconditionsoftheANFSanditscorrespondingMSEvaluesaregiveninTable4.FromtheFiguresandTablesthatpresentthesimulationresults,wecanseethatthegeneratedZMPtrajectoryfromthefuzzysystemisverysimilartoactualZMPtrajectoryofmeasuredforourwalkingrobotshowninFigs.11–16.ThedemonstratedhighperformanceabilityoftheANFS,meansthatANFScanbeeffectivelyusedtomodelandcontrolapracticalbipedwalkingrobot.3.3ComparisonsWenowcomparetheperformanceofANFSwithnumericalmethodsincludingthreetypesofstatisticalregressionmodels.Foreachstatisticalregressionmodel,fourdifferentcasetypeswereconstructed.Theirgeneralformsinthecaseoftwoinputsaregivenaswheretheciaretheregressioncoefficients.ThecorrespondingMSEvaluesaregiveninTables5–7whichrevealsthattype2givesthebestresultsforthexandycoordinatesforalltheconsideredwalkingconditions.ThegeneratedZMPpositionsandtheircorrespondingtrajectonsgeneratedusingthetype2regressionmodelareshowninFigs.26–31.WecanconcludethattheANFSdemonstratedaconsiderablybetterZMPtrajectorythanthestatisticalregressionmodels.4ConclusionsTheANFSmodellingattheZMPtrajectoryofapracticalbipedwalkingrobothasbeenpresented.ThetrajectoryoftheZMPisanimportantcriterionforthebalanceofaIEEProc.ControlTheory

注意事项

本文(外文翻译--关于装载适应性神经模糊系统的有两足行走的机器人的零刻点弹道造型 英文版.doc)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5