会员注册 | 登录 | 微信快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

   首页 人人文库网 > 资源分类 > DOC文档下载

外文翻译--包络法的资产负债.doc

  • 资源星级:
  • 资源大小:262.77KB   全文页数:12页
  • 资源格式: DOC        下载权限:注册会员/VIP会员
您还没有登陆,请先登录。登陆后即可下载此文档。
  合作网站登录: 微信快捷登录 支付宝快捷登录   QQ登录   微博登录
友情提示
2:本站资源不支持迅雷下载,请使用浏览器直接下载(不支持QQ浏览器)
3:本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译--包络法的资产负债.doc

英文原文AEnvelopeMethodofGearingFollowingStosic1998,screwcompressorrotorsaretreatedhereashelicalgearswithnonparallelandnonintersecting,orcrossedaxesaspresentedatFig.A.1.x01,y01andx02,y02arethepointcoordinatesattheendrotorsectioninthecoordinatesystemsfixedtothemainandgaterotors,asispresentedinFig.1.3.ΣistherotationanglearoundtheXaxes.Rotationoftherotorshaftisthenaturalrotormovementinitsbearings.Whilethemainrotorrotatesthroughangleθ,thegaterotorrotatesthroughangleτr1w/r2wθz2/z1θ,whererwandzarethepitchcircleradiiandnumberofrotorlobesrespectively.Inadditionwedefineexternalandinternalrotorradiir1er1wr1andr1ir1w−r0.ThedistancebetweentherotoraxesisCr1wr2w.pistherotorleadgivenforunitrotorrotationangle.Indices1and2relatetothemainandgaterotorrespectively.Fig.A.1.CoordinatesystemofhelicalgearswithnonparallelandnonintersectingAxesTheprocedurestartswithagiven,orgeneratingsurfacer1t,θforwhichameshing,orgeneratedsurfaceistobedetermined.Afamilyofsuchgeneratedsurfacesisgiveninparametricformbyr2t,θ,τ,wheretisaprofileparameterwhileθandτaremotionparameters.r1r1t,θx1,y1,z1x01cosθy01sinθ,x01sinθy01cosθ,p1θA,.10,,111tytxtr0,cossin,sincos0101011tytxtytxA.20,,0,,01010111xyyxrA.3cossin,sincos,,,,,1111122222zyzyCxzyxtrr202020202,sinsin,sincospyxyxA.42020202022222,sincos,sinsin,,pyxyxpxyrsincos,cossin,cossin121211CxpCxpypA.5Theenvelopeequation,whichdeterminesmeshingbetweenthesurfacesr1andr20222rrtrA.6togetherwithequationsforthesesurfaces,completesasystemofequations.Ifageneratingsurface1isdefinedbytheparametert,theenvelopemaybeusedtocalculateanotherparameterθ,nowafunctionoft,asameshingconditiontodefineageneratedsurface2,nowthefunctionofbothtandθ.Thecrossproductintheenvelopeequationrepresentsasurfacenormaland∂r2∂τistherelative,slidingvelocityoftwosinglepointsonthesurfaces1and2whichtogetherformthecommontangentialpointofcontactofthesetwosurfaces.Sincetheequalitytozeroofascalartripleproductisaninvariantpropertyundertheappliedcoordinatesystemandsincetherelativevelocitymaybeconcurrentlyrepresentedinbothcoordinatesystems,aconvenientformofthemeshingconditionisdefinedas0211111rrtrrrtr(A.7)InsertionofpreviousexpressionsintotheenvelopeconditiongivestyytxxppxC1111211cot0cot12111txCptyppA.8Thisisappliedheretoderivetheconditionofmeshingactionforcrossedhelicalgearsofuniformleadwithnonparallelandnonintersectingaxes.Themethodconstitutesageargenerationprocedurewhichisgenerallyapplicable.Itcanbeusedforsynthesispurposesofscrewcompressorrotors,whichareelectivelyhelicalgearswithparallelaxes.Formedtoolsforrotormanufacturingarecrossedhelicalgearsonnonparallelandnonintersectingaxeswithauniformlead,asinthecaseofhobbing,orwithnoleadasinformedmillingandgrinding.Templatesforrotorinspectionarethesameasplanarrotorhobs.Inallthesecasesthetoolaxesdonotintersecttherotoraxes.Accordinglythenotespresenttheapplicationoftheenvelopemethodtoproduceameshingconditionforcrossedhelicalgears.Thescrewrotorgearingisthengivenasanelementaryexampleofitsusewhileaprocedureforformingahobbingtoolisgivenasacomplexcase.TheshaftangleΣ,centredistanceC,andunitleadsoftwocrossedhelicalgears,p1andp2arenotinterdependent.Themeshingofcrossedhelicalgearsisstillpreservedbothgearrackshavethesamenormalcrosssectionprofile,andtherackhelixanglesarerelatedtotheshaftangleasΣψr1ψr2.Thisisachievedbytheimplicitshiftofthegearracksinthexdirectionforcingthemtoadjustaccordinglytotheappropriaterackhelixangles.Thiscertainlyincludesspecialcases,likethatofgearswhichmaybeorientatedsothattheshaftangleisequaltothesumofthegearhelixanglesΣψ1ψ2.FurthermoreacentredistancemaybeequaltothesumofthegearpitchradiiCr1r2.Pairsofcrossedhelicalgearsmaybewitheitherbothhelixanglesofthesamesignoreachofoppositesign,leftorrighthanded,dependingonthecombinationoftheirleadandshaftangleΣ.Themeshingconditioncanbesolvedonlybynumericalmethods.Forthegivenparametert,thecoordinatesx01andy01andtheirderivatives∂x01∂tand∂y01∂tareknown.Aguessedvalueofparameterθisthenusedtocalculatex1,y1,∂x1∂tand∂y1∂t.Arevisedvalueofθisthenderivedandtheprocedurerepeateduntilthedifferencebetweentwoconsecutivevaluesbecomessufficientlysmall.Forgiventransversecoordinatesandderivativesofgear1profile,θcanbeusedtocalculatethex1,y1,andz1coordinatesofitshelicoidsurfaces.Thegear2helicoidsurfacesmaythenbecalculated.Coordinatez2canthenbeusedtocalculateτandfinally,itstransverseprofilepointcoordinatesx2,y2canbeobtained.Anumberofcasescanbeidentifiedfromthisanalysis.iWhenΣ0,theequationmeetsthemeshingconditionofscrewmachinerotorsandalsohelicalgearswithparallelaxes.Forsuchacase,thegearhelixangleshavethesamevalue,butoppositesignandthegearratioip2/p1isnegative.Thesameequationmayalsobeappliedforthegenerationofarackformedfromgears.Additionallyitdescribestheformedplanarhob,frontmillingtoolandthetemplatecontrolinstrument.122AEnvelopeMethodofGearingiiIfadiscformedmillingorgrindingtoolisconsidered,itissuffcienttoplacep20.Thisisasingularcasewhentoolfreerotationdoesnotaffectthemeshingprocess.Therefore,areversetransformationcannotbeobtaineddirectly.iiiThefullscopeofthemeshingconditionisrequiredforthegenerationoftheprofileofaformedhobbingtool.Thisisthereforethemostcomplicatedtypeofgearwhichcanbegeneratedfromit.BReynoldsTransportTheoremFollowingHanjalic,1983,ReynoldsTransportTheoremdefinesachangeofvariableφinacontrolvolumeVlimitedbyareaAofwhichvectorthelocalnormalisdAandwhichtravelsatlocalspeedv.Thiscontrolvolumemay,butneednotnecessarilycoincidewithanengineeringorphysicalmaterialsystem.TherateofchangeofvariableφintimewithinthevolumeisvVdVttB.1Therefore,itmaybeconcludedthatthechangeofvariableφinthevolumeViscausedby–changeofthespecificvariablem/intimewithinthevolumebecauseofsourcesandsinksinthevolume,tdVwhichiscalledalocalchangeand–movementofthecontrolvolumewhichtakesanewspacewithvariableinitandleavesitsoldspace,causingachangeintimeofforρv.dAandwhichiscalledconvectivechangeThefirstcontributionmayberepresentedbyavolumeintegral.dVtVB.2whilethesecondcontributionmayberepresentedbyasurfaceintegralAdAVB.3ThereforeAVVVdAVdVtdVdtdtB.4whichisamathematicalrepresentationofReynoldsTransportTheorem.AppliedtoamaterialsystemcontainedwithinthecontrolvolumeVmwhichhassurfaceAmandvelocityvwhichisidenticaltothefluidvelocityw,ReynoldsTransportTheoremreadsdAWdVtddtdtAmVmVmVmVB.5IfthatcontrolvolumeischosenatoneinstanttocoincidewiththecontrolvolumeV,thevolumeintegralsareidenticalforVandVmandthesurfaceintegralsareidenticalforAandAm,however,thetimederivativesoftheseintegralsaredifferent,becausethecontrolvolumeswillnotcoincideinthenexttimeinterval.However,thereisatermwhichisidenticalforthebothtimes

注意事项

本文(外文翻译--包络法的资产负债.doc)为本站会员(英文资料库)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网([email protected]),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。

copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5