欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网
全部分类
  • 图纸下载>
  • 教育资料>
  • 专业文献>
  • 应用文书>
  • 行业资料>
  • 生活休闲>
  • 办公材料>
  • 毕业设计>
  • ImageVerifierCode 换一换
    首页 人人文库网 > 资源分类 > PDF文档下载  

    外文翻译--关于模仿正交切削和核实边缘断裂模型的一个新的车削方法的研究 英文版.pdf

    • 资源ID:97785       资源大小:422.42KB        全文页数:5页
    • 资源格式: PDF        下载积分:10积分
    扫码快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录 支付宝登录   QQ登录   微博登录  
    二维码
    微信扫一扫登录

    手机扫码下载

    请使用微信 或支付宝 扫码支付

    • 扫码支付后即可登录下载文档,同时代表您同意《人人文库网用户协议》

    • 扫码过程中请勿刷新、关闭本页面,否则会导致文档资源下载失败

    • 支付成功后,可再次使用当前微信或支付宝扫码免费下载本资源,无需再次付费

    账号:
    密码:
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源(1积分=1元)下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    外文翻译--关于模仿正交切削和核实边缘断裂模型的一个新的车削方法的研究 英文版.pdf

    DOI10.1007/s00170-004-2087-6ORIGINALARTICLEIntJAdvManufTechnol(2005)26:965969Gwo-LianqChernStudyonanewturningmethodtosimulateorthogonalcuttingandtoverifyanedgebreakoutmodelReceived:01September2003/Accepted:13January2004/Publishedonline:12January2005©Springer-VerlagLondonLimited2005AbstractInordertoverifyanedgebreakoutpredictingmodelinorthogonalcutting,whichwasproposedbytheauthorspreviouswork,orthogonalmachiningexperimentsmustbeconducted.ACNClathewasutilizedtocarryoutsimulatedorthogonalcut-tings.Theworkpiece,madeofaluminumalloyAl6061-T6,isacylindricalbarwithsquarethreadsandaxial/radialgrooves.Threadingandgroovinginsertswithaflatcuttingedgewerechosenasthecuttingtools.Theexperimentaldatawereusedtoverifythepreviouslydevelopededgebreakoutmodel.Thetestsshowedexcellentagreementwiththemodelpredictions.KeywordsEdgebreakout·Orthogonalcutting·Threading·Turning1IntroductionItiswellknownthatthecuttingprocesscauseslocalizedshearinadiscretezonethatextendsfromthecuttingedgetothework-materialfreesurface1,2.Researchonthemicro-morphologyofmachinedchipsusingthescanningelectronmicroscope(SEM)hadrevealedthatthechipformationoccursbyrepeatedshearacrossthin“shearfront”ornarrowbands,whichproducealamellarstructureinthechips3.Mostofthesemachiningresultswereobtainedundertheconditionsoforthogonalcutting.SinceMerchant4developedthemetalcuttingmodelin1940s,manyfollowershadtriedtoestablishamoreaccuratefor-mulatopredicttheshearangleinorthogonalcutting2,57.Thusorthogonalcuttingbecomesthefundamentalprocessandthemostbasictopicinmetalcutting.ChernandDornfeld8hadfoundthateitherburroredgebreakoutwasformedwhenthecuttingtoollefttheworkpieceinorthogonalcutting.Achamfercouldbeobservedontheworkpieceifedgebreakoutoccurred.G.-L.ChernDept.ofMechanicalEngineering,NationalYunlinUniversityofScienceandTechnology,Yunlin,Taiwan640,R.O.C.E-mail:CHERNGLpine.yuntech.edu.twTel.:+886-5-534260/ext.4145Theydevelopedacriterionfortheformationofburroredgebreakoutandproposedaburr/breakoutpredictingmodel.Inorthogonalcutting,theperfectlysharpcuttingedgeisastraightlineextendingperpendiculartothecuttingvelocityandgeneratesaplanesurfaceafterthecut.Inrealmanufacturingpro-cesses,however,trueorthogonalcuttingisrarelyseen.Slotting(horizontalmilling)andshapingaretwotypesoforthogonalma-chiningprocesses.Buttherangeofcuttingvelocityofashaperisquitelimitedandthedepthofcut(whichistheundeformedchipthickness)isnotuniformduringslotting.Thus,bothshapingandslottinghavesomelimitationstoperformthedesiredcut-tingoperationandviolatesomerequirementsoftheorthogonalcutting.Awidelyusedarrangementtoachieveorthogonalcuttingis“turningendoftube.”Theendofatubeiscutinalathebyatoolwithzeroinclinationangle.Sincethediameterofthetubeismuchgreaterthanthethicknessofthewall,thecuttingvel-ocitycanbetreatedasconstantalongthetubethicknessduringthecutting.Thisarrangementofsetupisgoodforexperimentsinvestigatingthecuttingbehavior,butisnotsuitabletoobservetheformationofedgebreakoutattheexitstageofcutting.Inordertosimulateorthogonalcutting,ChernandDorn-feld8usedauniversalimpactmachinetoservethispurpose.Theconfigurationofthis“impactmachining”testisshowninFig.1.Thetoolisfixedtothependulumbythespeciallyde-signedtoolholder.Apre-cutisnecessaryinordertoobtainaconstantundeformedchipthickness.ThisexperimentalsetupFig.1.Schematicillustrationofimpactmachiningtest8966wasusedtogetsomeburrorbreakoutattheworkpieceedgeandtoverifytheirburr/breakoutpredictingmodel.Butthecut-tingspeedcannotbeadjustedinthetestssincetheinitialpositionofthependulumisfixed.Also,theundeformedchipthicknessishardtocontrol.Thispaperproposesanewexperimentalarrangementtosim-ulateorthogonalcuttingtoovercometheselimitationsanddis-advantages.Itintroducesthegeometryofthespeciallydesignedworkpieceandthecuttingtool.Theexperimentaldatawereusedtoverifytheedgebreakoutmodel,whichwaspreviouslyde-velopedbytheauthor8,9,attheexitstageoforthogonalcut-ting.Theexperimentalresultsshowedexcellentagreementwiththemodelpredictions.2EdgebreakoutpredictingmodelAttheexitoftheorthogonalcutting,eitherburroredgebreakout(negativeburr)isformed.Theauthorhadstudiedthemechan-ismsattheexitstageoforthogonalcuttingonburrformationandedgebreakoutusinganSEMsubstage8,9.Anegativedefor-mationplanebeginstoformwhenthesteadystatechipformationstopsasthetoolapproachestheendofthecut.Plasticbendingandshearingofthenegativedeformationplanearethedominantmechanismsofburrformationwhereascrackpropagationalongtheplanecausestheedgebreakout.Achamferiscreatedontheworkpiecewhenedgebreakoutoccurs.Basedontheseobservation,aburr/breakoutmodelwaspro-posedasshowninFig.2.InFig.2a,thetoolwitharakeangleadvancestoAwhereburrformationinitiates.istheshearangleandtoistheundeformedchipthickness,whichisalsothedepthofcutinthiscase.Initiationofburrformationischaracterizedbytheinitialnegativedeformationangle,denotedaso,andtheinitialtooldistanceoftooltipAfromtheendofworkpiece,.Developmentandfinalburrformationinvolvesomerotation,ascanbeseeninFigs.2band2c.Fig.2ad.Burr/breakoutformationmodel8ainitiationbdevelopmentcfinalburrformationdworkpiecewithexitangleDetailsofthemathematicalderivationofthisburr/edgebreakoutmodelcanbefoundinReferences8and9.Inthispaper,onlytheequationsnecessaryforthepredictionoftheedgebreakout,Eqs.14,arequotedasfollows.Thelengthoftheedgebreakoutsurface,isdefinedasthedistanceAJinFig.2dandcanbecalculatedas=to(cot+0.5coto)sin1tanocot.(1)Theexitangle,isdefinedastheanglebetweenthecuttingvelocityandtheedgeoftheworkpiece,asshowninFig.2d.Theshearangle,inchipformationwithaconstantcuttingvelocitycanbepredictedassuggestedbyWright2:=12sin1bracketleftbigg2yusinparenleftBig45+2parenrightBigcosparenleftBig452parenrightBigsinbracketrightbigg+2,(2)whereyistheyieldstressanduistheultimatetensilestrength.TheadvantageofusingEq.2isthatitisfullypredictiveifthework-materialpropertiesareknown.Theangleofthenegativedeformationplane,o,isobtainedbyChernandDornfeld8fromtheminimumwork-rateassumptionandmustsatisfyddo(cottano+0.5)2+3coto3cot(+o)=0.(3)TheequivalentstrainatAinFig.2d,A,iscalculatedbyusingthevonMisestheory10asA=13cotocot(+o).(4)WhenAreachesthevalueoff,whichisthefracturestrainofthematerial,fractureoccursalongthenegativedeformationplaneandedgebreakoutisformed.Otherwiseaburrisformed,whichisnotconsideredanddiscussedinthispaper.3ExperimentalsetupAsetofexperimentswasdesignedtosimulateorthogonalmachining,utilizingacylindricalbarwith“threads.”Squaregroovesarecreatedalongtheaxialdirectionofthebartoprovideexitedges.Moreover,thegeometryofeachgrooveisspeciallydesignedtohaveacertainexitangleforthisstudy.Thedimen-sionandthecross-sectionoftheworkpieceareshowninFig.3.Theexitanglesforeachgrooveare30,60,90,and120degrees,respectively,ineachrevolution.Theratiooftheradiusoftheworkpiece,44.45mm(1.75in),tothemaximumdepthofcut,0.25mm(0.01in),is175:1.Thustheeffectduetothecurvatureoftheworkpiececanbeneglected.TheexperimentswereconductedonaCNClathe.ThetoolusedforthesetestsisaKennametalthreadingandgroovingin-sert(#NB3R-K420)withaflatcuttingedge.Thetoolholder(#NSR-2525M3)wasmodified,byremovingitsclearanceangleof967Fig.3.Dimensionandcross-sectionofthedesignedworkpieceTable1.CuttingconditionsandtoolgeometryCuttingspeed1.52,3.05,4.57,6.1m/s(5,10,15,20ft/s)Depthofcut,to0.15,0.25mm(0.006,0.01in)Exitangle,30,60,90,120(onworkpiece)Rakeangle,0Noseradius0.03mm(0.0012in)CuttingfluidAirthreedegrees,toprovideauniformdepthofcutinthemachiningtests.WorkpiecesbeingmachinedweremadeofaluminumalloyAl6061-T6.Theyieldstressandtheultimatetensilestrengthare275MPaand310MPa,respectively.Table1showsthecuttingconditionsofthese“threadcut-ting”tests.Thewidthofthecuttingedgeis4.95mm.Inordertoobtainauniformwidthofcutof3.175mm(0.125in),thefeedrateintheaxialdirectionisfixedasthepitchofthethreads,6.35mm/rev(0.25ipr).Depthofcut(undeformedchipthick-ness)inthesetestsistheadvancemovementofthetoolintheradialdirectionoftheworkpiece,beingchosenas0.15mm(0.006in)and0.25mm(0.01in).Therangeofthecuttingspeedisfrom1.52m/sto6.1m/s(5ft/sto20ft/s).Sincetheratioofthemaximumdepthofcuttothewidthofcutislessthan1/10,aplanestrainconditionissustained.4ResultsandmodelverificationToutilizethepreviouslydevelopedmodel,theshearangle,wasfirstcalculatedfromEq.2tobe31degrees.Onceisknown,thenegativedeformationangle,o,canbedeterminedbyEq.3foragivenexitangle,.Thentheequivalentstrain,A,iscalculatedfromEq.4.ThecalculatedvaluesofoandATable2.CalculatedvaluesofnegativedeformationangleandequivalentstrainExitangleNegativedeformationangleEquivalentstrain3012.02.106020.71.079029.20.7012040.80.48foreachexitangleareshowninTable2.Comparingthecalcu-latedAwiththefracturestrainoftheworkpiece,whichis0.5,wecanpredictwhetheredgebreakoutwilloccur.Itisfoundthatedgebreakoutoccursexceptfortheedgeswitha120-degreeexitangle.Lengthoftheedgebreakoutsurface,orbreakoutlength,canbepredictedbyEq.1.Figure4showsthesilhouetteofthemachinedworkpiecewithabreakout.Thebreakoutlengthsweremeasuredbyanopticalmicroscope.Figures5and6showthemeasuredandpredictedbreakoutlengthswithrespecttodifferentexitanglesandcuttingspeeds.Fromthesefigureswecanseethata90-degreeexitangletendstocausesmallerbreakoutlengths.Thepredictionfromthepro-posedmodelalsoshowssuchatendency.Thereasonforthisphenomenonisthatthenegativedeformationanglefora90-degreeexitangleislargerthanforboth30-degreeand60-degreeexitangles.ThismakesthelocationofpointAinFig.2dclosertopointJ,whereAJdeterminesthebreakoutlength.Foragivenexitangle,breakoutlengthincreaseswiththedepthofcut,ascanbeseenbycomparingFig.5withFig.6fordifferentdepthofcut.Thecuttingspeedcausessomevariationsonthebreakoutlengths.However,itsinfluence,comparedwiththedepthofcutandtheexitangle,isnotdominantunderthecho-sencuttingconditions.ThiscanbeunderstoodfromEq.2,whichexpectsthatshearangledoesnotchangewiththecuttingspeed.Followingthecalculatingprocedureasdepicted,thepredictedbreakoutlengthisfoundtobethesameforagivenshearangle.Thisisthelimitationfollowingfromthechosenshear-anglepre-dictingformula.Theangleofedgebreakoutonthemachinedworkpiece,whichisthesameasthenegativedeformationangleoforacertainexitangle,wasnotmeasuredinthisexperiment,duetotheconstraintsoftheexperimentalsetup.However,wecanFig.4.Photographshowingamachinedworkpiecewithabreakout968Fig.5.Measuredandpredictedbreakoutlengthsfordepthofcutof0.15mmstillqualitativelystudythisanglebyexaminingthebreakoutchamferformedafterthecutting.Itwasobservedthattheedge-breakoutangleincreaseswiththeexitangle.Thiscanbeveri-fiedbyEq.3,whichdeterminesthenegativedeformationangleforagivenshearangleandanexitangle,ascanbeseeninTable2.Thesepredictedresultsfullycoincidewiththeexperi-mentalobservations.5ConclusionsFromtheproposedmachiningtests,someconclusionscanbedrawn:1.Thedevelopedmodelgivesexcellentpredictionsofthebreakoutphenomenonasevaluatedintheproposedsimulatedorthogonalmachiningtests.2.Thebreakoutlengthincreaseswiththedepthofcut,whichisequaltotheundeformedchipthicknessinorthogonalcutting.Fig.6.Measuredandpredictedbreakoutlengthsfordepthofcutof0.25mm3.Thenegativedeformationangleisverysensitivetotheexitangleandthusinfluencestheequivalentstrainwhenburr/breakoutformationisinitiated.Thefracturestrainoftheworkpiecedeterminesatwhatexitanglebreakoutwilloccurinsteadofburrformation.4.Theedge-breakoutangleincreaseswiththeexitangle.Thecuttingspeeddoesnotdemonstrateassignificantaninflu-enceonthebreakoutformationasdothedepthofcutandtheexitangle.References1.vonTurkovichBF(1970)Shearstressinmetalcutting.JEngInd92(1):1511572.WrightPK(1982)Predictingtheshearplaneangleinmachin-ingfromworkmaterialstrain-hardeningcharacteristics.JEngInd104(3):285292

    注意事项

    本文(外文翻译--关于模仿正交切削和核实边缘断裂模型的一个新的车削方法的研究 英文版.pdf)为本站会员(上***)主动上传,人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知人人文库网(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    网站客服QQ:2881952447     

    copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

    备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!