电控发动机波形分析.doc_第1页
电控发动机波形分析.doc_第2页
电控发动机波形分析.doc_第3页
电控发动机波形分析.doc_第4页
电控发动机波形分析.doc_第5页
已阅读5页,还剩141页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电控发动机波形分析第一节:示波器在汽车诊断上的应用一:概 论 汽车上的电子设备每年都在增加,而且电子设备在汽车上所占比例每年都在上升,所以在维修汽车时,电子设备的修理工作也就越来越多,这就向今天的汽车维修技术提出了新的挑战。现代的汽车修理工作,已经不再是一个单纯的机械修理,而是机械和电子一体化的维修,如果一个汽车维修企业不具备有效地排除汽车电子设备的故障能力,那么无论是现在还是将来,这个企业部将面临被淘汰的危险。为了取得这方面的成功就必须具备以下三个基本条件:必备的测试设备;必须的维修资料;必要的技术培训,如果其中任何一个条件不具备,那么汽车修理的质量就很难保证。 汽车示波器的诞生为汽车修理技术人员快速判断汽车电子设备故障提供了有力的工具,用普通的示波器去测试电子设备时,最大的困难是设定示波器(即调整示波器的各个按纽,使显示的波形更为清楚)和分析波形的形状,汽车示波器将汽车电子设备的测试设定变的非常简单,只要象点菜单一样选择要测试的内容,无需任何设定和调整就可以直接观察波形了,这是因为汽车示波器是专门为汽车维修人员设计的“傻瓜”示波器,它的设定调整是全自动的,使用汽车示波器,就像使用一台“傻瓜”照相机一样方便。 示波器与万用表相比有着更为精确及描述细致的优点,万用表通常只能用一、二个电参数来反映电信号的特征,而示波器则用电压随时间的变化的图象来反应一个电信号,它显示电信号比万用表更准确、更形象。所以“一个画面通常要胜过一千个数字”。 汽车电子设备的信号有些是变化速率非常快的,变化周期达到千分之一秒,通常测试仪器的扫描速度应该是被测信号的5-10倍,许多故障信号是间歇的,时有时无,这就需要仪器的测试速度高于故障信号的速度。汽车示波器完全可以胜任这个速度,汽车示波器不仅可以快速捕捉电路信号,还可以用较慢的速度来显示这些波形,以便可以一面观察,一面分析。它还可以用储存的方式记录信号波形,可以倒回来观察已经发生过的快速信号,这就为分析故障提供了极大方便。无论是高速信号(例如:喷油嘴、间歇性故障信号),还是慢速信号(如:节气门位置变化及氧传感器信号),用汽车示波器来观察都可以得到想要得到的波形结果,一个好的示波器就像一把尺子,它可以去测量计算机系统工作状况,通过汽车示波器可以观察到汽车电子系统是如何工作的。 此外,汽车示波器能够使你确认故障是否真的被排除了,而不是仅仅知道故障码是否尚未清除,这可以通过修理前后从汽车示波器中观看到氧传感器的信号波形来加以判断。这可以实实在在的在修理中提高你的水平,汽车示波器能够显示出需要你修理的故障是怎样地一种波形,使得你能够清楚故障的真实存在。二:汽车示波器的应用 汽车示波器在汽车电子控制故障诊断中,有两种应用方式: 方式一:整个系统运行状态的分析-确定整个系统运行的情况; 方式二:某个电器或电路的故障分析-确定在整个系统运行正常的情况下,某个电器或某段电路的故障。 系统运行情况分析(O2FB-氧反馈平衡方法) 许多人认为在汽车诊断中使用汽车示波器的原因是为了让汽车修理技术人员可以“看”到在电子电路中发生了什么。这确实是一个好的理由,但是为什么要去“看”到电子电路呢? 近三十年来点火示波器在汽车修理业有如此有用的一个原因就是点火示波器能够看到电子信号。点火示波器不仅使其看到了点火系统的问题,还可以帮助查出许多电子和机械方面的故障。在汽车修理业存在一个问题那就是自从1980年燃料反馈控制系统出现以来,还没有一种快速彻底同时又准确的方法,能够去测量所有的电子式和机械式反馈系统的运行性能。在有些汽车上可以连接解码器,并从解码器上非常快速得到许多有用的资料,但有许多汽车没有这样的信息传送能力,由于解码器软件的限制,它不能看到。例如:损坏的喷油驱动器或氧传感器变化过慢或产生反向的电压信号。此外,大多数解码器只能用英文字母或数字来显示测试结果,而不是用观看起来比较容易的画面来显示。 随着汽车中电子设备的增加,现在可以正式的称自已的行业既是电子修理行业,又是汽车修理业,让我们把自已的行业和纯电子修理业(TVVCR和计算机)详细地做个比较,纯电子修理业已经使用示波器许多年了,现在汽车修理业的许多人正在赶上来,但是对于汽车修理技术员来讲不同的地方在于,电子修理业在检查一个电子故障时,通常有一个确定的测试点,它可以进行最初的系统检查和后来的维修验证,例如在VCR“测试点A”的波形是好的,那么整个VCR系统运行就是正常的。如果能留在装有燃油反馈控制系统的汽车上进行同样的“整个系统运行情况”的分析,那肯定是一件非常好的事。那么哪里是通常的燃油反馈控制汽车的“测试点A”呢?当今汽车电子设备如控制电脑,所有传感器,执行器和电路都是为了使燃油混合比能保持在十分狭小的催化反应器的操作“窗口”中,如果发动机控制管理系统的控制目的是为了使废气排版中有害气体降到最低程度,是不是也想要去监视它呢?如果发动机管理系统用氧传感器信号做为整个系统质量控制的“看门狗”该怎么办?用汽车示波器测量氧传感器电路,可以快速有效地(甚至在汽车行驶中)监视整个燃油反馈控制系统的工作,因此,在装有燃油反馈控制系统的汽车上,“实验点A”就是氧传感器的信号,与其它的测试仪表相比,汽车示波器能给更多的关于随着氧传感器信号的变化所发生情况的全部信息。一个好的氧传感器是非常敏感的,而且容易被各种情况所干扰,因此若氧传感器能够产生合适良好的波形时,可以确信,修理顶目是成功的,整个系统无论发动机还是电子控制部分都是正常的。 在本部分中,为了简单起见,对于使用汽车示波器测量或验证氧传感器信号的过程,都简称为氧传感器反馈平衡(O2FB)过程。 氧传感器平衡过程是诊断修理的验证过程,通过这一过程维修技术人员将汽车示波器接到氧传感器电路上,验证氧传感器本身是否工作正常,然后分析波形。进而进行:1)确定需要进行怎样的修理(电子或机械的);2)在修复后交车前验证燃料反馈控制系统故障是否真的已经排除或还需要重新测试。 在这个过程中你能够用氧传感器反馈平衡分析方法来诊断真空漏气、点火不良、喷油不平衡、气缸压力等问题,运用你所掌握的氧反馈平衡技能,你将有能力在实际中重新调整汽车。自从燃油反馈控制系统出现以来,还从来没有什么设备在测试时这么有效果。那么想要得到什么呢?在七十年代,甚至在今天,点火高压波形告诉你点火系统和许多发动机的机械部分是如何发挥功能的。在修理之后,你通过检查波形来看你是否解决了问题。今天你可以用氧传感器信号做同样的事。但是,正像都已知道点火高压波形可以告诉什么一样,掌握从氧传感器波形中分析故障的技能,需要通过训练和丰富的实际经验。 有一种说法:“历史本身在重复”。昨天技术人员运用点火高压波形去分析故障,今天又要学习用氧传感器来分析故障。有趣的是在大多数汽车中,点火高压波形仍然是最复杂的波形。 用氧反馈平衡诊断汽车故障的方法是分析电控喷射发动机故障的一种新方法,如果在以前你还没有遇到这样的问题,你无疑地会感到疑惑,事实上在确定你所修理的汽车行驶性能以及排放等方面的问题是否有效之前,为什么有那么多的疑点。甚至在会天的修理市场上,对你的修理工作是否成功来加以确认仍然是很重要的。 电器电路故障分析 这部分是否已经修好这是比系统运行分析低一级的分析,这项分析可以帮助分析某个电器电路是否有故障,以及验证。 用其它测试仪表来检查某一特定电路元件,也可以得到好的结果,例如冷却水温度传感器开路故障,你当然可以用汽车示波器来诊断,但用数字万用表也可以顺利的做出同样自诊断结果,然而对于氧传感器反馈平衡信号没有其它设备比汽车示波器更有效。 对于某一个传感器或执行器以及电路,应该怎样用汽车示波器观察呢?所需的汽车电子信号都可以用五种测量尺度来加以判断,也就是说任何一个汽车电子信号都应具有以下可度量的五个参数指标,它们分别是: a.幅值-信号最高电压 b.频率-信号的循环时间 c.形状-信号的外形模样 d.脉宽-信号的占空比或所占时间 e.阵列-信号的重复特性(例如:同步脉冲或串行数据) 汽车示波器可以显示出所有电子信号的这五种判定尺度,如果你知道如何去分析电子信号的这五种参数,你就能够判定这个电子信号的波形是否正常,通过波形分析你可进一步检查出电路中传感器,执行器以及电路和控制电脑等各部分的故障,也可以进行修理后的结果分析。最后再做氧反馈平衡检查整个发动机控制系统的运行情况。 故障电路从损坏状态到被修复状态在汽车示波器上显示的波形几乎总是在它的五种测量尺度上发生剧烈的变化。这就是为什么要用汽车示波器对汽车电气设备修理结果进行验证的重要原因。 汽车示波器的主要应用范围包括: a.在日常调整或行驶性能及排版诊断中实施氧反馈平衡(O2FB)试验; b.查出故障码所指电路的故障; c.查出所怀疑的造成行驶故障以及排放故障的那些电路中的问题。 汽车计算机用“金色规则”编程来实现信息通讯。技术人员必须开始自已编程去理解“电语言的金色规则”为了使汽车计算机系统正常运行,就必须用有正常判定度量的信号来通讯,或者说它不认识语言。汽车示波器可以在同一时间内显示出两个电子信号的5种判定尺度,这就是汽车示波器是强有力的工具的原因。第二节:电控发动机电子信号分析一:汽车电子信号的五大类型 当今汽车系统中存在五种基本类型的电子信号,把这五种基本的汽车电子信号称为“五要素”。 “五要素”可以看成是控制系统中各个传感器,控制电脑和其它设备之间相互通迅的基本语言,就像英语的字母,它们都有不同的“发音”。正是“五要素”中各自不同特点,构成用于不同通信的目的。 当今汽车电子信号的五大基本类型: (1)直流(DC)信号 在汽车中产生直流(DC)信号的传感器或电源装置有-蓄电池电压或控制电脑(PCM)输出的传感器参号电压。 模拟传感器信号-发动机冷却水温度传感器、燃油温度传感器、进气温度传感器、节气门位置传感器、废气温再循环压强和位置,翼板式或热丝式空气流量计、真空和节气门开关,以及通用汽车、克莱斯勒汽车和亚洲汽车的进气压力传感器。 (2)交流(AC)信号 在汽车中产生交流(AC)信号的传感器和装置有:车速传感器(VSS)、防滑制动轮速传感器、磁电式曲轴转角(CKP)和凸轮轴(CMP)传感器、从模拟压力传感器(MAP)信号得到的发动机真空平衡波形、爆震传感器(KS)。 (3)频率调制信号 在汽车中产生可变频率信号的传感器和装置有:数字式空气流量计、福特数字式进气压力传感器、光电式车速传感器(VSS)、霍尔式车速传感器(VSS)、光电式凸轮轴和曲轴转角(CKP)传感器、霍尔式凸轮轴(CAM)和曲轴转角(CKP)传感器。 (4)脉宽调制信号 在汽车中产生脉宽调制信号的电路或装置有:初级点火线圈、电子点火正时电路、废气再循环控制(EGR)、净化、涡轮增压和其它控制电磁阀、喷油嘴、怠速控制马达和电磁阀。 (5)串行数据(多路)信号 若汽车中具备有自诊断能力和其它串行数据送给能力的控制模块,则串行数据是由发动机控制电脑(PCM),车身控制电脑(BCM)和防滑制动系统(ABS)或其控制模块产生。二:汽车电子信号的五个判定依据 已经知道了汽车电子信号的“五要素”-直流、交流、频率、调制、脉宽调制和串行数据信号。现在再回头看一下汽车电子语言的难题-五个“判据”即五种判定尺度。要从五种判定信号中得到只有五种判定特征的信息类型是重要的,因为发动机控制电脑需要通过分辨这些特征来识别各个传感器提供的各种信息并依据这些特征来发出各种命令,指挥不同的执行器动作,这些特征就是汽车电子信号的五种判定依据。 五个判定依据是: a.幅值;b.频率;c.形状;d.脉冲宽度;e.阵列。 它们的定义分别为: 幅值-电子信号在一定点上的即时电压; 频率-电子信号在两个事件或循环之间的时间,一般指每秒的循环数(HZ); 脉冲宽度-电子信号所占的时间或占空比; 形状-电子信号的外形特征;它的曲线、轮廓和上升沿、下降沿等; 阵列-组成专门信息信号的重复方式,例如#1缸传送给发动机控制电脑的上止点同步脉冲信号,或传给解码器的有关冷却水温度是210华氏度的串行数据流等。 每个“五要素”电子信号都可以用五种判定尺度中的一个或多个特征组成。表 1电子信号的判断依据信号类型判断依据幅度频率外形脉冲宽度阵列直 流交 流频率调制脉宽调制串行数据 本表显示五个判定根据与五种类型的相关连带关系 为了使汽车的计算机系统功能正常,必须去测量用于通讯的电子信号,换言之就是,必须能“读”与“写”计算机电子通信的通用语言,用汽车示波器你将可以“截听”到汽车计算机中电子对话,这即可以用来解决测试点问题,也可以用来验证修理工作完成后的工作是否正常。如果一个传感器,执行器或控制电脑产生了不正确判定尺度的电子信号。该电路可能遭到“通讯中断”的损失,它会表现为行驶能力及排放等故障码(DTC)。 每一个“五要素”电子信号都要用判定尺度依据来确定电子通讯,五个基本类型中的任何一个必然是有一个或多个判定依据尺度来通讯。上表将帮助您更好地理解什么类型的电子信号由什么判定依据来进行它们的“电子通信”。 在汽车发动机控制电脑(PCM)和其它电子智能设备中用来通信的串行数字信号是最复杂的信号,它是包含在汽车电子信号中的最复杂的“电子句子”,在实际中,要用专门的解码器去读取信息。第三节:汽车示波器的使用操作一:汽车示波器的使用操作 1.注意事项 测试点火高压线时,必须使用专用的电容探头,不能将示波器探头直接接入点火次级电路。 使用汽车示波器时,注意远离热源,例如排气管,催化器等,温度过高会损坏仪器。 汽车示波器在测试时要注意测试线尽量离开风扇叶片、皮带等转动部件,图1是风扇叶片绞切测线时的波形。 测试时确认发动机盖的液压支撑是好的,防止发动机盖自动下降时伤及头部或损坏汽车示波器。 路试中,不要将汽车示波器放在仪表台上方,最好是拿在手中测试。 2.信号频率和时基选择 时基/频率表的用途是帮助根据信号频率来选择时基或判断显示波形的频率。 时基/频率表的使用方法:可以通过计算屏幕显示波形的循环次数(1-5)的方法用汽车示波器去判定信号频率,表内左侧第一列为确定的频率数,其他列为当前时基数。 3.示波器设置要领 用示波器测试一个未知的信号时,如何设置示波器是一件相当复杂的事,本部分说明用汽车示波器去捕捉波形时,设置示波器的基本方法,它可以帮助读者理解并掌握示波器设置的要领。 根据信号频率确定时基设定值。表1 时基频率转换表Hz示波器显示的波形循环次数123451010ms10ms50ms50ms50ms205ms10ms20ms20ms50ms305ms5ms10ms20ms20ms405ms5ms10ms10ms20ms502ms5ms10ms10ms10ms602ms5ms5ms10ms10ms702ms5ms5ms5ms10ms802ms5ms5ms5ms10ms902ms5ms5ms5ms5ms1001ms2ms5ms5ms5ms200500s1ms2ms2ms5ms300500s1ms1ms2ms2ms400500s500s1ms1ms2ms500200s500s1ms1ms1ms600200s500s500s1ms1ms700200s500s500s1ms1ms800200s500s500s500s1ms900200s500s500s500s1ms1000100s200s500s500s500s200050s100s200s200s500s300050s100s200s200s200s400050s50s200s100s200s500020s50s100s100s100s 1)设置项目 为了显示一个波形,必须时要对示波器做如下设定: 电压比例; 时基; 触发电平(也可以将触发模式置于“自动”档); 耦合方式(AC交流、DC直流或GND接地)。 a.直流(DC)耦合方式。 b.交流(AC)耦合方式:此方式能过滤信号中的直流部分,只显示交流分量,常用于两线变磁阴磁电式传感器信号的波形观察,以及信号中的噪音和发电机漪涟电压(二极管)或其它较少的例子中的观察。 c.接地GND方式:此方式用于判定接地位置或0V电压水平或显示示波器0V电压参考点。 2)设置要领 当用自动设置功能(AUTORANGE)能够看清楚显示的波形时,可以用手动设置(MANUAL)来进一步微调。 如果显示屏上仍不能看清晰的波形,可以根据推断,假设电压比例和触发电平,暂且先不设定时基。 用数字式万用表测量信号电压,并根据测出的电压来设置电压档比例。 将触发电平设定在信号电压的一半以上,在设定电压比例和触发电平后,唯一未设定的就是时基了。 这时手动设定时基,大多数信号应在1毫秒到1秒之间。 时基/频率表可以用来帮助选择时基,可以先用汽车示波器上的游动光标测量信号频率,然后确定所希望的显示波形的循环次数(个数)再从表中找到信号频率与循环次数(个数)的交点,这就是要确定时基数。 3)当无法捕捉到波形时 确认触发模式是在“自动(AUTO)”模式下,如果在“自动”模式下汽车示波器有可能不触发。 确认汽车示波器的屏幕显示并未处在冻结(HOLD)状态,若屏幕已被冻结,就按一下解除键。 确认信号是否真的存在,可以用万用表先检查电压,如果确信信号是存在的,用汽车示波器和万用表不能够捕捉到,就检查测试线和接柱的连接情况。 确认耦合方式不在“接地”(GND)模式,若在“接地”模式,任何信号都无法进入。 确认触发源是定义在所择的通道上。 4.示波器用语 触发电平:示波器显示时的起始电压值; 触发源:示波器的触发通道通道(CH1)、通道(CH2)和外触发通道(EXT); 触发沿:示波器显示时的波形上升或下降沿; 电压比例:每格垂直高度代表的电压值; 时基:每格水平长度代表的时间值; 直流耦合:测量交流和直流信号; 交流耦合:只允许信号的交流成份通过它滤掉了直流成份(电容用来过滤直流电压); 接地耦合:确认示波器显示的0V电压位置; 自动触发:如果没有手动设定,示波器就自动触发并显示信号波形。第四节:传感器波形分析一:车速传感器 车速传感器检测电控汽车的车速,控制电脑用这个输入信号来控制发动机怠速,自动变速器的变扭器锁止,自动变速器换档及发动机冷却风扇的开闭和巡航定速等其它功能。车速传感器的输出信号可以是磁电式交流信号,也可以是霍尔式数字信号或者是光电式数字信号,车速传感器通常安装在驱动桥壳或变速器壳内,车速传感器信号线通常装在屏蔽的外套内,这是为了消除有高压电火线及车载电话或其他电子设备产生的电磁及射频干扰,用于保证电子通讯不产生中断,防止造成驾驶性能变差或其他问题,在汽车上磁电式及光电式传感器是应用最多的两种车速传感器,在欧洲、北美和亚洲的各种汽车上比较广泛采用磁电式传感器来进行车速(VSS)、曲轴转角(CKP)和凸轮轴转角(CMP)的控制,同时还可以用它来感受其它转动部位的速度和位置信号等,例如压缩机离合器等。 1)磁电式车速成传感器,参见图16。 磁电式车速传感器是一个模拟交流信号发生器,它们产生交变电流信号,通常由带两个接线柱的磁芯及线圈组成。这两个线圈接线柱是传感器输出的端子,当由铁质制成的环状翼轮(有时称为磁组轮)转动经过传感器时,线圈里将产生交流电压信号。 磁组轮上的逐个齿轮将产生一一对应的系列脉冲,其形状是一样的。输出信号的振幅(峰对峰电压)与磁组轮的转速成正比(车速),信号的频率大小表现于磁组轮的转速大小。传感器磁芯与磁组轮间的气隙大小对传感器的输入信号的幅度影响极大,如果在磁组轮上去掉一个或多个齿就可以产生同步脉冲来确定上止点的位置。这会引起输出信号频率的改变,而在齿减少时输出信号幅度也会改变,发动机控制电脑或点火模块正是靠这个同步脉冲信号来确定触发电火时间或燃油喷射时刻的。 测试步骤 可以将系统驱动轮顶起,来模拟行驶时的条件,也可以将汽车示波器的测试线加长,在行驶中进行测试。 波形结果 车轮转动后,波形信号在示波器显示中心处的零伏平线上开始上下跳动,并随着车速的提高跳动越来越高。波形显示与例子十分相似,这个波形是在大约30英里/小时的速度下记录的,它又不像交流信号波形,车速传感器产生的波形与曲轴和凸轮轴传感器的波形的形状特征十分相似的。 通常,波形在零伏线上下的跳变是非常对称的,车速传感器的信号的振幅随车速增加。速度越快波形幅值就越高,而且车速增加,波形频率也将增加,示波器将显示有较多的波形震荡。 确定振幅、频率和形状等关键的尺度是正确的、可重复的、有规则的、可预测的。这是指波峰的幅值正常,两脉冲间的时间不变,形状是不变的且可预测的,尖峰高低不平是因传感器的磁芯与磁组轮相碰所引起的,这可能是有传感器的轴衬或传动部件不圆造成的,尖峰丢失是损坏缺点的磁组轮造成的。 不同型式的传感器,其波形的峰值电压和形状有轻微的差异,另外由于传感器内部是一个线圈,所以故障是与温度有关的,在大多数情况下波形会变得短很多,变形也很大,同时还可能设定故障码(DTC),故障在示波器上显示的摇动线束,这可以更进一步确定磁电式传感器是造成故障的根本原因,车速传感器信号输出最常见的故障是根本不产生信号,但如果驾驶汽车时波形是齐直的直线,那么应该先检查示波器和传感器的连线,确定电路有没有对地搭铁,确认零部件能否转动(塑料齿轮有没有咬死等)确认传感器气隙是否正常,然后再断定传感器。 2)霍尔式车速传感器,参见图17。 霍尔效应传感器(开关)在汽车应用中是十分特殊的,这主要是由于变速器周围空间位置冲突,霍尔效应传感器是固体传感器,它们主要应用在曲轴转角和凸轮轴位置上,用于开关点火和燃油喷射电路触发,它还应用在其它需要控制转动部件的位置和速度控制电脑电路中。 霍尔效应传感器或开关,由一个几乎完全闭合的包含永久磁铁和磁极部分的磁路组成,一个软磁铁叶片转子穿过磁铁和磁极间的气隙,在叶片转子上的窗口允许磁场不受影响的穿过并到达霍尔效应传感器,而没有窗口的部分则中断磁场,因此,叶片转子窗口的作用是开关磁场,使霍尔效应象开关一样地打开或关闭,这就是一些汽车厂商将霍尔效应传感器和其它类似电子设备称为霍尔开关的原因,该组件实际上是一个开关设备,而它的关键功能部件是霍尔效应传感器。 测试步骤 将驱动轮顶起模拟行使状态,也可以将汽车示波测试线加长进行行驶的测试。 波形结果 当车轮开始转动时,霍尔效应传感器开始产生一连串的信号,脉冲的个数将随着车速增加而增加,与图例相像,这是大约30英里/小时时记录的,车速传感器的脉冲信号频率将随车速的增加而增加,但位置的占空比在任何速度下保持恒定不变。车速传感器越高,在示波器上的波形脉冲也就越多。 确认从一个脉冲到另一个脉冲的幅度,频率和形状是一致的,这就是说幅度够大通常等于传感器的供电电压,两脉冲间隔一致,形状一致,且与预期的相同。 确定波形的频率与车速同步,并且占空比决无变化,还要观察如下内容:观察波形的一致性,检查波形顶部和底部尖角。 观察幅度的一致性:波形高度应相等,因为给传感器的供电电压是不变的。有些实例表明波形底部或顶部有缺口或不规则。 这里关键是波形的稳定性不变,若波形对地电位过高,则说明电阻过大或传感器接地不良。 观察由行驶性能问题的产生和故障码出现而诱发的波形异常,这样可以确定与顾客反映的故障或行驶性能故障产生的根本原因直接有关信号问题。 虽然霍尔效应传感器一般设计能在高至150温度下运行,但它们的工作仍然会受到温度的影响,许多霍尔效应传感器在一定的温度下(冷或热)会失效。 如果示波器显示波形不正常,检查被干扰的线或连接不良的线束,检查示波器和连线,并确定有关部件转动正常(如:输出轴、传感器转轴等)。 当示波器显示故障时,摇动线束,这可以提供进一步判断,以确认霍尔效应传感器是否是故障的根本原因。 3)光电式车速传感器,参见图18。 光电式车速传感器是固态的光电半导体传感器,它由带孔的转盘两个光导体纤维,一个发光二极管,一个作为光传感器的光电三极管组成。 一个以光电三极管为基础的放大器为发动机控制电脑或点火模块提供足够功率的信号,光电三极管和放大器产生数字输出信号(开关脉冲)。发光二极管透过转盘上的孔照到光电二极管上实现光的传递与接收。转盘上间断的孔可以开闭照射到光电三极管上的光源,进而触发光电三极管和放大器,使之像开关一样地打开或关闭输出信号。 从示波器上观察光电式车速传感器输出波形的方法与霍尔式车速传感器完全一样,只是光电传感器有一个弱点即它们对油或赃物在光通过转盘传递的干涉十分敏感,所以光电传感器的功能元件通常被设计成密封得十分好,但损坏的分电器或密封垫容器在使用中会使油或赃物进入敏感区域,这会引起行驶性能问题并产生故障码。二:温度传感器 大多数燃油温度传感器(FT)、发动机冷却水温传感器(ECT)和进气温度传感器(IAT)是以相同的方式工作的,其测量方法也相同,大数ECT、IAT和FT传感器都是一个负温度系数的热敏电阻,也就是说它是一个两线式模拟传感器,这种传感器的电阻随着传感器温度的增加而减小,也有的传感器外壳接地,因此它只有一条信号线。 这些传感器由控制电脑提供5V参考电源供电,同时它们将与温度成比例的电压反送给控制电脑(PCM)。典型的FT、ECT和IAT传感器的电阻变化范围是在-40时约为10K,在130时约为50。 1)燃油温度传感器,参见图9。 燃油温度传感器(FT)通常检测发动机的燃油管道中的温度,当用示波器或万用表测量燃油温度传感器时,你所读出的是NTC电阻两端的电压降,当较低温度时传感器两端电阻及电压降比较高,而温度高时,传感器电阻及两端电压降则变低。 试验方法: 除了故障与温度有关外,应从发动机完全冷的状况下开始测试,当得到故障与温度有关时,从被怀疑的温度范围开始可能是比较好的方法。 起动发动机,然后加速至2500rpm,并保持,让示波器中的波形从左向右在屏幕上完全显示出来,定住波形,停止检测,这时传感器已经通过了汽车全部的运行范围,如果故障是间或发生在行驶中,这可能还将有必要在路试中测试。 传感器的电压显示范围在3V到5V以下(当发动机完全冷时),在运行温度范围内大到下降1V-2V,这个直流(DC)信号的判定的关键尺度是电压幅度,这个传感器在任何温度下都应该发出平稳幅度的电压信号。 当燃油温度传感器开路时将出现向上直到参考电压值的峰尖; 当燃油温度传感器对地短路时将出现向下直到接地电压值的峰尖。 2)进气温度传感器,参见图10。 进气温度传感器通常用于检测进气管中的空气温度,当用示波器或万用表测试时,从表中读出的是传感器热敏电阻两端电压降,进气温度低时,传感器电阻值及电压降就高,进气温度高时传感器的电阻值和电压降就低。 试验方法: 除非发现的故障依赖于温度,否则应在发动机完全冷的情况下开始测试工作,用这种方法,可以更好地从怀疑有故障的温度段开始测试。 起动发动机加速至2500rpm,稳住转速看示波器屏幕上波形从左端开始直到右端结束,示波器上时间轴每格5秒钟,总共一次记录传感器工作为50秒钟,将屏幕上的波形定住,停止测试。 此时传感器已经通过从完全冷的发动机到全部的工作范围,测试进气温度传感器另一种方法是用喷射清洗剂或水喷雾器喷射传感器,这样会使传感器降温,当打开点火开关,发动机又转动的情况下,喷射传感器其波形电压会向上升。 波形结果: 按照制造厂的资料确定输出电压范围,通常传感器的电压应在3V-5V(完全冷车状态)之间,在运行温度范围内电压降大约在1V-2V左右,这个直流信号的关键是电压幅度,在各种不温度下传感器必须给出对应的输出电压信号。 当IAT电路开路时将出现电压向上直到接地电压值的蜂尖; 当IAT电路对地短路时将出现电压向下直到参考电压值为零。 3)冷却水温度传感器,参见图11。 大多数在80年代和更新的轿车上的燃料温度(FT),发动机冷却水温度(ECT)和进气温度(IAT)传感器以相同的工作,所以试验步骤相似,大多数发动机冷却水温度、进气温度和燃料温度传感器是负温度效应的热敏元件。这意味着它们主要是当温度增加时电阻减少的二线模拟传感器。一些传感器用它们自已的外壳作为接地,所以,他们只有一根线-单线。 温度传感器用5伏参考电源信号供电,向控制电脑返回与温度成正比的电压信号,发动机冷却水温度传感器通常探测在水套中的发动机冷却水的温度。当你将示波器或数字万用表与从温度传感器来的信号相接时,你读的是传感器的负温度效应的电阻上的电位降,要记住的是,当它们冷时,它们的电阻(和电压)是大的,当它们热的,它们的电阻(和电压)是低的。 典型地,燃料温度、进气温度和冷却剂温度传感器电阻阻值范围从在-40时约10K至130时约50。 测试传感器 如果你正观察的问题与温度有关,可以从全冷态的发动机开始试验步骤。如果故障与温度的变化无关,可以直接从怀疑的温度范围(从顾客处了解到的等)开始试验是较好的。起动发动机,在2500rpm下保持节气门不变,直至轨迹从屏幕的左侧至屏幕右侧,在每分度6秒下,看起来好象不变,但这仅仅10分钟后按示波器上RUN/HOLD按钮以冻结显示上的波形,传感器现已通过整个运行范围,从全冷态至正常工作温度。 波形结果: 检查制造商的规范手册以得到精确的电压范围,通常冷车时传感器的电压应在3V-5V到(全冷态)之间,然后随着发动机运转减少至运行正常温度时的1伏左右。直流信号的判定性度量是幅度。在任何给定温度下,好的传感器必须产生稳定的反馈信号,发动机冷却剂温度电路的开路将使电压波形出现向上的尖峰(到参考电压值),发动机冷却水温度电路的闭路将产生向下尖峰(到接地值)。 缩短时基轴扭速至200毫秒/分度(200MS/D)或更短对捕获在正常采集方式下快速和间歇性故障是有用的。 一些1985和更新的克莱斯勒和通用生产的轿车在125华氏度时(约1.25伏)串进一个1K欧电阻回路。这使得波形先开始呈约1.25伏。形成一向上的阶越。波形上跳至3.7伏。然后继续下降至完全升温,电压约2伏。通常对一些1985和更新的克莱斯勒和通用生产的轿车这是正常的,所以当第一次看到它时,如果发动运行得好,检查轿车制造规范资料,资料也许会证明电阻开关插入的方法。三:节气门位置传感器 节气门位置传感器是安装在节气门轴上的用来检测节气门开度的传感器,它有两种类型:一种是模拟节气门位置传感器,另一种是开关式节气门位置传感器。 1)模拟式节气门位置传感器,参见图12。 模拟式节气门位置传感器(TPS)是一个可变电阻(电位计),它告诉电脑节气门的位置,大多数节气门位置传感器包含与节气门轴相联的滑动触点臂,该触点臂在绕可动触点的轴放置的电阻材料段上滑动。 节气门位置传感器是一个三线传感器。其中一线从电脑的传感器电源引来的5V电压对传感器电阻材料供电,另一线连接电阻材料的另一端为传感器提供接地。第三根线连至传感器的可动触点,提供信号输出至电脑,电阻材料上每点的电压,由可动触点探测,并与节气门角度成正比。 这是一个重要的传感器,因为电脑用它的信号来计算发动机负荷,点火时间,排气再循环控制,怠速控制和像变速器换挡点那样的其他参数。一个坏的节气门体位置传感器会引起加速滞后和怠速问题,以及驾驶性能问题和排放试验失败等。 几乎所有轿车制造商生产的节气门位置传感器以相同方式运行,所以这个示波器初设定和试验步骤应适合于大多数厂家和型号的三线节气门位置传感器,通常节气门位置传感器在节气门关时产生约低于1伏的电压信号,在油门全开时产生约低于5伏的电压信号。 测试传感器 打开点火开关,发动机不运转,慢慢地让油门从关到全开,并重新返回至关油门。反复这个过程几次。慢慢地做,所以波形像例子中铺开在显示屏上。 波形结果 翻阅制造商规范手册,以得到精确度的电压范围,通常传感器的电压应从怠速的的低于1伏到油门全开时的低于5伏,波形上不应有任何断裂,对地尖峰或大跌落。特到应注意在前1/4油门运动中的波形,这是在驾驶中最常用到传感器碳膜的部分,传感器的前1/8至1/3的皮膜通常首先磨损。 4.0升吉普车切诺基有两个节气门位置传感器,一个用于电脑,另一个用于变速器控制。发动机节气门位置传感器来的信号与变速器节气门位置传感器操作相对应。变速器节气门位置传感器在怠速运转时产生低于5伏的电压,在节气门全开时变到低于1伏,有一些你也许会碰到的其他情况。 2)模拟式节气门故障波形,参见图13。 一辆轿车在节气门转动到小于半开处会猛窜动,然后又正常了。从传感器捕获的节气门位置传感器波形将间歇性地波动。传感器不是每次节气门开或关时都表现有毛病。有时甚至会良好地工作半小时。 测试传感器 打开点火开关,不运转发动机,慢慢地让节气门从关到全开,并重新返回至节气门,气门全关,反复这个过程几次。慢慢地做,波形像例子中的显示在显示屏上是较好的。 波形结果 如是传感器是坏的话,翻阅制造商规范手册,以得到精确的电压范围,通常传感器的电压应从怠速时的低于1伏到油门全开的的低于5伏,波形上不应有任何断裂,对地尖峰或大跌落。特别应注意达到的2.8伏处的波形;这是传感器的炭膜容易损坏或断裂的部分。 在传感器中磨损或断裂的炭膜不能向电脑提供正确的油门位置信息。所以电脑不能为发动机计算正确的混合气命令,引起驾驶性能问题。 3)开关式节气门位置传感器 开关式节气门位置传感器是由两个开关触点构成一个旋转开关,一个常闭触点构成怠速开关,节气门处在怠速位置是:它位于闭合状态,将发动机控制电脑的怠速输入信号端子接地搭铁,发动机控制电脑接到这个信号后,即可使发动机进入怠速闭环控制,或者控制发动机在“倒拖”状态时停止喷射燃油,另一个常开触点节气门开度达到全负荷状态时,将发动机控制电脑的全负荷输入信号端接地搭铁。发动机控制电脑接到这个信号后,即可使发动机进入全负荷加浓控制状态。 开关式节气门位置传感器的旋转臂与节气门轴相联,并随节气门一起转动,它是一个三线传感器。四:进气压力传感器(MAP) 除了福特的进气压力传感器以外,几乎所有的进气压力传感器的输出信号都是模拟的。福特的进气压力传感器输出信号是数字信号,在用示波器测试进气压力传感器时,模拟信号和数字的设定和检测步骤是不同的。 1)模拟输出进气压力传感器,参见图7。 模拟式进气压力传感器在发动机感测到的真空度直接对应产生可变的电压输出信号。它是一个三线传感器,有5V参考电源,其中两条线是参考电源的正负极,另一条是给电脑的输出信号。 试验方法一 关闭所有附属电气设备,起动发动机,并使其怠速运转,怠速稳定后,检查怠速输出信号电压(图7中左侧波形)。做加速和减速试验,应有类似图中的波形出现。 将发动机转速从怠速增加到油门全开(加速过程中油门缓中速打开),并持续到2秒钟,不宜超速。 再减速回到怠速状况,持需约2秒钟; 再急加速至油门全开,然后再回到怠速; 将波形定位在屏幕上,观察波形并与波形图比较。 也可以用手动真空泵对其进行抽真空测试,观察真空表读数值与输出电压信号的对应关系。 波形结果: 从汽车资料中可查到各种不同车型在不同的真空度下的输出电压值,将这些参数与示波器显示的波形进行比较。通常进气压力传感器的输出电压在怠速是1.25V,当节气门全开时略低于5V,全减速时接近0V。 大多数空气压力传感器在真空度高时(全减速是24英寸汞柱)产生低的电压信号(接近0V),而真空值低时(全负荷时接近3英寸汞柱)产生高的电压信号(接近5V),也有些进气压力传感器设计成相反方式,即当真空度增高时输出电压也增高。 当进气压力传感器有故障时,可以查阅维修手册,波形的幅度应保持在接近特定的真空度范围内,波形幅度的变化不应有较大的偏差。当传感器输出电压不能随发动机真空值变化时,在波形图上可明显看出来,同时发动机将不能正常工作。 有些克莱斯勒汽车的进气压力传感器在损坏时,不论真空度如何变化输出电压不变。 有些系统像克莱斯勒汽车通常显示出许多电子杂波,甚至在NORMAL采集方式。在波形上还有许多杂波,通常四缸发动机有杂波,因为在两个进气行程间真空波动比较多,通用汽车进气压力传感器杂波最少。 如果波形杂乱或干扰太大,不用担心。因为这些杂波在传送到控制电脑后,控制电脑中的信号处理电路会清除杂波干扰。 2)福特数字输出进气压力传感器,参见图8。 从八十年代初到九十年代许多福特和林肯汽车上都安装数字式进气压力传感器。 这种压力传感器产生的是频率调制式数字信号,它的频率随进气真空而改变,当没有真空时输出信号频率为160HZ,怠速时真空度为19英寸汞柱,它产生约150HZ的输出,检测时应按照维修手册中的资料来确定真空度和输出频率信号关系,数字输出进气压力传感器也是一个三线传感器,用5V电源给它供电。 试验方法: 打开点火开关,但不起动发动机,用手动真空泵给进气压力传感器施加不同的真空度,并观察示波器的波形显示。 确定判定参数:幅值、频率、形状是相同的,精确性和重复性好,幅值接近5V,频率随真空度变化,形状(方波)保持不变; 确定在给定真空度的条件下,传感器能发出正确的频率信号。 波形结果: 波形的幅值应该是满5V的脉冲,同时形状正确,例如波形稳定、矩形主角正确、上升沿垂直。频率与对应的真空度应符合维修资料给定的值。 可能的缺陷和参数值的偏差主要是不正确频率值,脉冲宽度变短,不正常尖峰等。五:车速传感器(防抱死系统) 防抱死系统车轮速度传感器是交流信号发生器,这就是说它们产生交流电流信号,防抱死系统车轮速度传感器是模拟传感器,这些传感器安装在轮盘内侧或前轴上,它们是两线传感器,而两线常封装于屏蔽编织线的导管中,这是因为它们的信号有些敏感,用电子术语说,容易被高压线,轿车电话或轿车上其它电子设备来的电磁或射频干扰。从安全的立场上看,防抱死系统车轮速度传感器更是十分重要的。电磁干扰和射频会扰乱信号的标准度量,并使“电子通讯”中断。它会使防抱死系统失效或设定诊断故障码(DTC)。 如果电磁干扰或射频在错误的时间扰乱该传感器信号,这会引起防抱死系统失效,在这里的编织屏蔽保证在防抱死系统传感器和防抱死系统控制电脑间的“电子通讯”不中断,在测试控制电脑发出的信号时,不能损坏线的外表屏蔽,或可以试着测试接线柱。 两个最常见的探测转轴的方法是用磁电式或光电式传感器,在许多北美,亚洲和欧洲生产的轿车和卡车上,从最便宜的型号到最豪华的,都用磁阻或磁感应传感器来探测防抱死系统的车轮速度,它们也可以用来传感其他转动部件的速度或位置,例轿车速度传感器,曲轴和凸轮轴位置传感器等。 它们通常由线圈,带两个端子的软棒状磁体构成。它们的两个线圈接头是传感器的输出端子,当一环状齿轮(有时称为尺度轮)使铁质金属转动通过传感器时,它在线圈中感应出一电压。在环状轮上单一的齿型会产生单一的正弦形状的输出。振幅(峰值电压)与尺度度轮的转速成正比(轮毂或轴)。信号的频率是基于磁阻器的转动速度,传感器的磁舌和磁阻器轮之间的气隙对传感器信号幅度有大的影响。 测试传感器,参见图15 如果传感器安在驱动轮上,将轮子抬高地面以模拟转动动条件。如果传感器不安在转动轮上,用示波器探头线延长在转动时从前盖移到传感器,用千斤顶上抬轮子,用手转动轮子是一种选择,但开动轿车是最好的方法。 波形结果 当轮子开始转动时,在示波器中部的水平直线开始在零线的上下摆动,当转速增加时,摆动将越来越高。与本例十分相似的波形将近出现。这个波形是在约20公里/小时时记录的,它不像一些其他交流信号发生器波形,(例曲轴和凸轮轴位置传感器)但十分像轿车速度传感器,防抱死系统车轮速度传感器形成的波形形状看上去都相似,通常摆动(波形的“上”“下”)相互对应于零线,零线的上和下十分符合对称关系。 当轿车加速时,轮速传感器的交流信号幅值增加。速度越快,波形越高,当每小时公里数增加时,频率增加

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论