齿轮.dwg
齿轮.dwg

多自由度机械手设计【5自由度】【7张图纸】【优秀】

收藏

压缩包内文档预览:
预览图
编号:272945    类型:共享资源    大小:1.61MB    格式:RAR    上传时间:2014-04-20 上传人:上*** IP属地:江苏
50
积分
关 键 词:
自由度 机械手 设计 图纸 优秀 优良
资源描述:

多自由度机械手设计

36页-17000字数+说明书+开题报告+中期报告+7张CAD图纸

中期报告.doc

升降油缸.dwg

多自由度机械手设计开题报告.doc

多自由度机械手设计论文.doc

底座.dwg

总装配.dwg

机械手图纸全部.dwg

液压原理图.dwg

立柱.dwg

腰部中间轴.dwg

装配图.dwg

齿轮.dwg


摘要

   随着现代科学技术的发展,机器人技术越来越受到广泛关注,在工业生产日益现代化的今天,机器人的使用变得越来越普及。因此,对于机器人技术的研究也变得越来越迫切,尤其是工业机器人方面。本论文作者针对这一领域,设计了一款液压机械机械手,该机器人拥有五个自由度。首先,作者针对该机器人的设计要求,对结构设计选择了一个最优方案,对关键零件设计并进行校核。

   本课题是一个机械、液压紧密的实用性项目,文中对机械手机械结构的设计、液压系统的设计讨。最后,总结了全文,指出了机械手的改进措施、应用前景和发展方向。



   关键字:机械手,液压系统,五个自由度


目录

摘要I

AbstractII

第1章 绪论1

1.1 选题背景及其意义1

1.2 国内外研究现状与发展趋势1

1.3 本设计主要研究的内容3

第2章 机械手的总体设计4

2.1 机械手的组成及各部分关系概述4

2.2 机械手的设计分析4

2.2.1 设计要求4

2.2.2 总体设计任务分析4

2.2.3 总体方案拟定6

第3章 机械手结构的设计分析8

3.1 末端操作器的设计分析8

3.2 手腕的设计分析8

3.3 手臂的设计分析8

3.4 机身和机座的设计分析9

第4章 机械手各部件的载荷计算11

4.1 设计要求分析11

4.2 手指夹紧机构的设计11

4.3 手臂伸缩机构载荷的计算12

4.4 手臂俯仰机构载荷的计算13

4.5 机身摆动机构载荷力矩的计算13

4.6 初选系统工作压力14

第5章 机械手各部件结构尺寸计算及校核16

5.1 手腕油缸尺寸的确定16

5.2 手臂伸缩机构结构尺寸的确定19

5.3 手臂俯仰机构结构尺寸的确定19

5.4 机身摆动机构的确定19

5.5 强度校核19

5.6 弯曲稳定性校核20

第6章 液压系统的设计22

6.1 制定基本方案22

6.1.1 基本回路的选择22

6.2 液压元件的选择22

6.2.1 液压泵的选择22

6.2.2 液压泵所需电机功率的确定24

6.2.3 液压阀的选择24

6.2.4 液压辅助元件的选择原则25

6.2.5 油箱容量的确定26

6.2.6 液压原理图27

结论29

参考文献30


本设计主要研究的内容

   本课题研究的机械手一共拥有五个自由度,采用全液压驱动,本文拟定解决的主要问题如下:

   1、机械部分

   机械手的执行机构,由手爪、手腕、手臂、支座组成。手爪是抓取机构,用来夹紧或是松开喷枪,与人的手指相仿,能完成人手的类似动作。手腕是连接手指和手臂的元件,可以进行俯仰动作。简单的机械手可以没有手腕,而只有手臂,手臂的动作和手腕相类似,只是动作范围更大,可以前后伸缩,上下俯仰和左右摆动等。支柱用来支撑手臂,它是固定的。

(1)机械结构部分

    1.运动形式方案选择

   为实现不同动作,应选取不同方案。本课题已确定采用球坐标机构。

    2.机身结构

   机身采用回转与俯仰结构机身。实现回转的驱动方案有几种,摆动油缸驱动,升缩油缸在上,回转油缸在下。实现机身回转采用液压马达驱动。

   3.手臂结构

   手臂的运动方式为左右转动、前后伸缩及上下摆动,其中上下摆动采用手臂俯仰油缸与活塞杆机构连用来实现,手臂的前后伸缩采用直线缸来实现。

    4.手腕结构

   手腕设计根据我所设计的机械手的要求,选择双自由度手腕。手腕的俯仰动作由液压缸直接驱动,抓取同样用液压缸驱动。

(2)机械手驱动方案

    采用液压驱动,液压实现机身的回转与俯仰,以及各部件的伸缩俯仰运动。为实现机身的旋转,选用液压马达驱动。手臂伸缩与俯仰都采用液压缸驱动。手腕俯仰采用液压缸驱动,手抓的驱动同样采用液压驱动。



第2章 机械手的总体设计


2.1 机械手的组成及各部分关系概述

   机械手由三大部分(机械部分、传感部分、控制部分)六个子系统(驱动系统、机械结构系统、感受系统、机器人-环境交互系统、人机交互系统、控制系统)组成。

   机械结构系统:机器人的机械结构又主要包括末端操作器、手腕、手臂、机身(立柱)。

   驱动系统:驱动器是把从动力源获得的能量变换成机械能,使机器人各关节工作的装置,常见的驱动形式有步进电机驱动、直流电机驱动、交流电机驱动、液压驱动、气压驱动以及近些年出现的一些特殊的新型驱动(例如超声波驱动、磁致伸缩驱动、静电驱动等)。

   控制系统:机器人的控制方式多种多样,根据作业任务不同,主要可分为点位控制方式(PTP)、连续轨迹控制方式(CP)、力(力矩)控制方式和智能控制方式。


内容简介:
毕业设计(论文)中期报告题目:多自由度机械手 系 (部): 机电信息系 专 业: 机械设计制造及其自动化 班 级: 学 生: 学 号: 指导教师: 2013年3月15日1、 毕业设计(论文)进展状况。1. 加强度现实生产中工业机械手的理解2. 设计时对机械手主要的知识认知3. 机械手主要由手部机构、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构一般由液压、气动、电气装置驱动。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度 。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。本设计采用5自由度机械手。4. 机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。本设计才用液压式驱动,因为其结构简单,尺寸紧凑,控制方便,驱动力大。5. 自由度机械手能够手抓张合,手部回转,手臂伸缩,手臂回转,手臂升降,5个主要运动。 (1)手部:采用直线液压缸,通过机构运动实现手抓的张合。 (2)臂部:采用直线缸来实现手臂的平动。 (3)机身: 采用一个直线缸和一个回转缸来实现手臂升降和回转驱动。 机械手 机械手臂 机械手爪 机械手底座1 机械手底座22、 存在的问题及解决的措施 存在的问题 :1.对各主要结构进行计算分析 2.确定机械手各部件的可靠性 3.绘制主要结构零件图 4.完成整个原理控制图 5. 绘制装配图 解决措施:查阅相关资料,熟练Auto CAD等绘图软件。 3、 后期工作安排。 7-9周:机械手的驱动与控制方案设计; 10-11周:绘制图纸、誊抄毕业设计; 12-13周:毕业设计收尾工作:设计检查、装订等工作; 14-15周:提交毕业设计论文。 指导老师签字: 年 月 日 毕业设计(论文)开题报告题目:多自由度机械手设计 系 (部): 机电信息系 专 业: 机械设计制造及其自动化 班 级: 学 生: 学 号: 指导教师: 2012年12月23日1、 毕业设计(论文)题目背景、研究意义及国内外相关研究情况。目的:随着工业自动化发展的需要,机械手在工业应用中越来越重要。工业机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,提高劳动生产率和自动化水平,解决了工业生产中长期频繁单调的操作。也提高了工件的生产加工速度,所以机械手的使用是非常高效的,就此设计出让人跟满意的机械手。意义:通过设计提高学生的机构分析与综合的能力,机械结构设计的能力,机电液一体化系统设计能力,掌握实现生产过程自动化的设计方法.通过设计把有关课程(机构分析与综合,机械原理,机械设计,液压与气压技术,自动控制理论,测试技术,数控技术,微型计算机原理及应用,自动机械设计等)中所获得的理论知识在实际中综合地加以运用,使这些知识得到巩固和发展,并使理论知识和生产密切地结合起来.工业机械手设计是机械设计及制造专业的学生一次比较完善的机械化设计.通过设计,培养学生独立的机械整体设计的能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础.通过设计,使学生能熟练地应用有关参考,计算图表,手册,图册,和规范;熟悉有关国家标准和部颁标准,以完成一个工程技术人员在机械整体设计方面所必须具备的基本技能训练.。国内外相关研究情况:随着科技的不断进步,工业机器人机械手的发展过程可分为三代,第代,为示教再现型机器人,它主要由机器手控制器和示教盒组成,可按预先引导动作记录下信息重复再现执行,当前工业中应用最多。第二代为感觉型机器人,如有力觉触觉和视觉等,它具有对某些外界信息进行反馈调整的能力,目前已进入应用阶段。第三代为智能型机器人它具有感知和理解外部环境的能力,在工作环境改变的情况下,也能够成功地完成任务,它尚处于实验研究阶段。1国外工业机器人的的发展美国是机器人机械手的诞生地,早在1961年,美国的ConsolidedControlCorp和AMF公司联合研制了第一台实用的示教再现机器人。经过40多年的发展,美国的机器人机械手技术在国际上仍一直处于领先地位。其技术全面、先进,适应性也很强。日本在1967年从美国引进第一台机器人,1976年以后,随着微电子的快速发展和市场需求急剧增加,日本当时劳动力显著不足,工业机器人在企业里受到了“救世主”般的欢迎,使其日本工业机器人得到快速发展,现在无论机器人的数量还是机器人的密度都位居世界第一,素有“机器人王国”之称。德国引进机器人的时间比英国和瑞典大约晚了五六年,但战争所导致的劳动力短缺,国民的技术水平较高等社会环境,却为工业机器人的发展、应用提供了有利条件。此外,在德国规定,对于一些危险、有毒、有害的工作岗位,必须以机器人来代替普通人的劳动。这为机器人的应用开拓了广泛的市场,并推动了工业机器人技术的发展。目前,德国工业机器人的总数占世界第二位,仅次于日本。法国政府一直比较重视机器人技术,通过大力支持一系列研究计划,建立了一个完整的科学技术体系,使法国机器人的发展比较顺利。在政府组织的项目中,特别注重机器人基础技术方面的研究,把重点放在开展机器人的应用研究上。而由工业界支持开展应用和开发方面的工作,两者相辅相成,使机器人在法国企业界得以迅速发展和普及,从而使法国在国际工业机器人界拥有不可或缺的一席之地。英国纪70年代末开始,推行并实施了一系措施列支持机器人发展的政策,使英国工业机器人起步比当今的机器人大国日本还要早,并曾经取得了早期的辉煌。然而,这时候政府对工业机器人实行了限制发展的错误。这个错误导致英国的机器人工业一蹶不振,在西欧几乎处于末位。近些年,意大利、瑞典、西班牙、芬兰、丹麦等国家由于自身国内机器人市场的大量需求,发展速度非常迅速。目前,国际上的工业机器人公司主要分为日系和欧系。日系中主要有安川、oTC、松下、FANLUC、不二越、川崎等公司的产品。欧系中主要有德国的KUKA、CLOOS、瑞典的ABB、意大利的CO毗U及奥地利的工GM公司。2国内工业机器人的发展我国工业机器人起步于20世纪70年代初期,经过30多年发展,大致经历了3个阶段:70年代萌芽期,80年代的开发期和90年代的应用化期。随着20世纪70年代世界科技快速发展,工业机器人的应用在世界掀起了一个高潮,在这种背景下,我国于1972年开始研制自己的工业机器人。进入20世纪80年代后,随着改革开放的不断深入,在高技术浪潮的冲击下,我国机器人技术的开发与研究得到了政府的重视与支持,“七五”期间,国家投入资金,对工定机器人及零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷漆,点焊,弧焊和搬运机器人。,国家高技术研究发展计划开始实施,经过几年研究,取得了一大批科研成果。成功地研制出了一批特种机器人。从2O世纪9O年代初期起,我国的国民经济进入实现两个根本转变期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进了一大步,先后研制了点焊,弧焊,装配,喷漆,切割,搬运,码垛等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批工业机器人产业化基地,为我国机器人产业的腾飞奠定了基础。但是与发达国家相比,我国工业机器人还有很大差距。目前,我国工业机器人公司主要有中国新松机器自动化股份有限公司和首钢莫托曼机器人有限公司。2、 本课题研究的主要内容和拟采用的研究方案、研究方法或措施。研究的主要内容:1.加强度现实生产中工业机械手的理解2.设计前对机械手主要的知识认知 3.对工业机械手的各主要组成部分的分析,设计方案的确定 4.确定机械手的主要结构 5.对各主要结构进行计算分析 6.确定能够实现机械手的各种功能如:手抓去,腕回转,臂伸缩 7.确定机械手各部件的可靠性 8.绘制主要结构零件图 9.完成整个原理控制图 10.绘制装配图 研究思路与方法: 采用同其它同等机械类设备的类比,方案比较等方法,根据工业机械手的实际应用特征及现有的物质、经济技术、人力等条件,以所学的理论知识为基础,按照工业机械手工作的一般过程、设计标准,借鉴以往相似设备的成功经验进行初步设计,然后对初步设计方案进行验算,修正,直至达到安全、经济、实用的目的。其中对于机械手设计中的关键问题、难点问题进行重点分析解决,确保整个设计方案的可行性和最佳性。三、本课题研究的重点及难点,前期已开展工作。1、重点及难点: 本课题研究的重点是(1)选取机械手的坐标形式及自由度;(2)设计各机械手的执行机构:(3)如手、手腕、手臂;液压传动系统的设计;(4)机械手控制系统设计:如PLC控制;难点是选取机械手的坐标形式及自由度。2、前期工作:(1)查阅大量相关专业资料为设计做好准备;(2)进行多自由度机械手工作原理的分析;(3)分析并提出了总体机械结构方案。4、 完成本课题的工作方案及进度计划(按周次填写)。 1-2周:机械手坐标形式及自由度的选取;3-4周:机械手的手部结构方案设计;5-6周:机械手的腕部与手臂结构方案设计;7-9周:机械手的驱动与控制方案设计;10-11周:绘制图纸、誊抄毕业设计;12-13周:毕业设计收尾工作:设计检查、装订等工作;14-15周:提交毕业设计论文。五、指导教师意见(对课题的深度、广度及工作量的意见) 指导教师: 年 月 日 6、 所在系审查意见: 系主管领导: 年 月 日参考文献1刘明保,吕春红等.机械手的组成机构及技术指标的确定.河南高等专科学校学报.2004.1.1.2李超.气动通用上下料机械手的研究与开发.陕西科技大学.2003.3陆祥生,杨绣莲.机械手.中国铁道出版社.1985.1.4张建民.工业机械人.北京:北京理工大学出版社.1992.5史国生.机械手步进控制中的应用.中国工控信息网.2005.1.6李允文.工业机械手设计.机械工业出版社.1996.4.7蔡自兴.机械人学的发展趋势和发展战略.机械人技术.2001.4.8金茂青,曲忠萍,张桂华.国外工业机械人发展的态势分析.机械人技术与应用.2001.9蔡自兴.机器人原理及其应用.湖南:中南工业大学出版社.1988.10过三郎等 机器人工程学及其应用.北京:国防工业出版社.1989.11付京孙等.机器人学.北京:中国科学技术出版社.1992.12范印越.机器人技术.北京:电子工业出版社.1988.13刘德满,尹朝万.机器人智能控制技术.长春:东北大学出版社.1993.14李明.单臂回转机械手设计.制造技术与机床.2004.06.15张军,封志辉.多工步搬运机械手的设计.机械设计.2004.04. 16濮良贵,纪名刚.机械设计.第七版.北京:高等教育出版社.2001.01. 17蔡自兴.机械人学的发展趋势和发展战略.机械人技术.2001.4.18刘明保,吕春红等.机械手的组成机构及技术指标的确定.河南高等专科学校学报.2004.1.1.XXXX大学本科毕业设计说明书 毕 业 设 计(说明书) 题 目 多自由度机械手设计 专 业XXXXXXXXXXXXXXXXXXXXX学生姓名 学 号 指导教师 论文字数 完成日期 2013年X月 1摘要随着现代科学技术的发展,机器人技术越来越受到广泛关注,在工业生产日益现代化的今天,机器人的使用变得越来越普及。因此,对于机器人技术的研究也变得越来越迫切,尤其是工业机器人方面。本论文作者针对这一领域,设计了一款液压机械机械手,该机器人拥有五个自由度。首先,作者针对该机器人的设计要求,对结构设计选择了一个最优方案,对关键零件设计并进行校核。本课题是一个机械、液压紧密的实用性项目,文中对机械手机械结构的设计、液压系统的设计讨。最后,总结了全文,指出了机械手的改进措施、应用前景和发展方向。关键字:机械手,液压系统,五个自由度IIIAbstractWith the development of modern science and technology, the robot technology has been paid more and more attention, in an increasingly modernized industrial production, the use of robots is becoming more and more popular. Therefore, the research of robot technology becomes more and more urgent, especially industrial robots. The author of this thesis in this field, design of a hydraulic mechanical manipulator, the robot has five degrees of freedom. First of all, the author according to the requirement of the design of this robot, an optimal scheme of the structure design of the selection, the design of key parts and checked.This topic is a mechanical, hydraulic close practical project, design of mechanical design, mechanical structure of the hydraulic system of the mobile phone in. Finally, summarized the full text, points out the improvement measures, manipulator application prospect and development direction.Keywords: manipulator, hydraulic system, five degrees of freedom目录摘要IAbstractII第1章 绪论11.1 选题背景及其意义11.2 国内外研究现状与发展趋势11.3 本设计主要研究的内容3第2章 机械手的总体设计42.1 机械手的组成及各部分关系概述42.2 机械手的设计分析42.2.1 设计要求42.2.2 总体设计任务分析42.2.3 总体方案拟定6第3章 机械手结构的设计分析83.1 末端操作器的设计分析83.2 手腕的设计分析83.3 手臂的设计分析83.4 机身和机座的设计分析9第4章 机械手各部件的载荷计算114.1 设计要求分析114.2 手指夹紧机构的设计114.3 手臂伸缩机构载荷的计算124.4 手臂俯仰机构载荷的计算134.5 机身摆动机构载荷力矩的计算134.6 初选系统工作压力14第5章 机械手各部件结构尺寸计算及校核165.1 手腕油缸尺寸的确定165.2 手臂伸缩机构结构尺寸的确定195.3 手臂俯仰机构结构尺寸的确定195.4 机身摆动机构的确定195.5 强度校核195.6 弯曲稳定性校核20第6章 液压系统的设计226.1 制定基本方案226.1.1 基本回路的选择226.2 液压元件的选择226.2.1 液压泵的选择226.2.2 液压泵所需电机功率的确定246.2.3 液压阀的选择246.2.4 液压辅助元件的选择原则256.2.5 油箱容量的确定266.2.6 液压原理图27结论29参考文献30第1章 绪论1.1 选题背景及其意义随着工业自动化程度的提高,工业现场的很多易燃、易爆等高危及重体力劳动场合必将由机器人所代替。这一方面可以减轻工人的劳动强度,另一方面可以大大提高劳动生产率。通过本课题,让学生在毕业设计过程中综合大学所学基础课程及专业课程,培养学生综合应用所学知识和技能去分析和解决一般工程技术问题的能力;进一步培养学生分析问题、创造性地解决实际问题的能力。本课题中多自由度机械手系统主要采用液压驱动。1.2 国内外研究现状与发展趋势(1)国内的研究现状工业机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。工业机械手延伸和扩大了人的 手足和大脑功能,它可替代人从事危险、有害、有毒、低温和高温等恶劣环境中工作:代替人完成繁重、单调重复劳动,提高劳动生产率,保证产品质量。目前主要应用与制造业中,特别是电器制造、汽车制造、塑料加工、通用机械制造及金属加工等工业。工业机械手与数控加工中心,自动搬运小车与自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。随着生产的发展,功能和性能的不断改善和提高,机械手的应用领域日益扩大。我国工业机械手的研究与开发始于20世纪70年代。1972年我国第一台机械手开发于上海,随之全国各省都开始研制和应用机械手。从第七个五年计划(1986-1990)开始,我国政府将工业机器人的发展列入其中,并且为此项目投入大量的资金,研究开发并且制造了一系列的工业机器人,有由北京机械自动化研究所设计制造的喷涂机器人,广州机床研究所和北京机床研究所合作设计制造的点焊机器人,大连机床研究所设计制造的氩弧焊机器人,沈阳工业大学设计制造的装卸载机器人等等。这些机器人的控制器,都是由中国科学院沈阳自动化研究所和北京科技大学机器人研究所开发的,同时一系列的机器人关键部件也被开发出来,如机器人专用轴承,减震齿轮,直流伺服电机,编码器,DCPWM等等。我国的工业机械手发展主要是逐步扩大其应用范围。在应用专业机械手的同时,相应的发展通用机械手,研制出示教式机械手、计算机控制机械手和组合式机械手等。可以将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,设计成典型的通用机构,以便根据不同的作业要求,选用不用的典型机构,组装成各种用途的机械手,即便于设计制造,又便于跟换工件,扩大了应用范围。目前国内机械手主要用于机床加工、锻造。热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专业机械手的同时,相应的发展通用机械手,有条件的要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。(2)国外研究现状国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如 发生少许偏差时候,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定的成绩。1962年,美国联合控制公司在上述方案的基础上,又试制成一台数控示教再现型机械手。运动系统仿造坦克炮塔,臂可以回转、俯仰、伸缩,用液压驱动;控制系统用磁鼓做储存装置。不少球面坐标式机械手就是在这个基础上发展起来的;同年该公司和普曼公司合并成为万能制动公司,专门生产工业机械手。1962年美国机械铸造公司也实验成功一种叫Versatran机械手,原意是灵活搬运,可做点位和轨迹控制:该机械手的中央立柱可以回转、升降、伸缩,采用液压驱动,控制系统也是示教再现型。虽然这2种机械手出现在六十年代初,但都是国外机械手发展的基础。从60年代后期起,喷漆、弧焊工业机器人相继在生产中开始应用。1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制出一种UnimationVic.arm型工业机械手,装有小型电子计算机进行控制,用于装配作业。联邦德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业:联邦德国Kuka公司还生产一种点焊机械手,采用关节式结构和程序控制;日本是工业机器人发展最快,应用国家最多的国家,自1969年从美国引进两种典型机械手后,开始大力从事机械手的研究,目前以成为世界上工业机械手应用最多的国家之一。前苏联自六十年代开始发展应用机械手,主要用于机械化、自动化程序较低、繁重单调、有害于健康的辅助性工作。(3)发展趋势现代汽车制造工厂的生产线,尤其是主要工艺的焊接生产线,大多采用了气动机械手。车身在每个工序的移动;车身外壳被真空吸盘吸起和放下,在指定工位的夹紧和定位;点焊机焊头的快速接近、减速软着陆后的变压控制点焊,都采用了各种特殊功能的气动机械手。目前世界高端工业机械手均具有高精化,高速化,多轴化,轻量化等的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,良新产品可以达到6轴,负载2KG的产品系统总重已突破100KG。更重要的是将机械手、柔性制造系统和柔性制造单元相互结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,从而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。1.3 本设计主要研究的内容本课题研究的机械手一共拥有五个自由度,采用全液压驱动,本文拟定解决的主要问题如下:1、机械部分机械手的执行机构,由手爪、手腕、手臂、支座组成。手爪是抓取机构,用来夹紧或是松开喷枪,与人的手指相仿,能完成人手的类似动作。手腕是连接手指和手臂的元件,可以进行俯仰动作。简单的机械手可以没有手腕,而只有手臂,手臂的动作和手腕相类似,只是动作范围更大,可以前后伸缩,上下俯仰和左右摆动等。支柱用来支撑手臂,它是固定的。(1)机械结构部分 1.运动形式方案选择为实现不同动作,应选取不同方案。本课题已确定采用球坐标机构。 2.机身结构机身采用回转与俯仰结构机身。实现回转的驱动方案有几种,摆动油缸驱动,升缩油缸在上,回转油缸在下。实现机身回转采用液压马达驱动。3.手臂结构手臂的运动方式为左右转动、前后伸缩及上下摆动,其中上下摆动采用手臂俯仰油缸与活塞杆机构连用来实现,手臂的前后伸缩采用直线缸来实现。 4.手腕结构手腕设计根据我所设计的机械手的要求,选择双自由度手腕。手腕的俯仰动作由液压缸直接驱动,抓取同样用液压缸驱动。(2)机械手驱动方案 采用液压驱动,液压实现机身的回转与俯仰,以及各部件的伸缩俯仰运动。为实现机身的旋转,选用液压马达驱动。手臂伸缩与俯仰都采用液压缸驱动。手腕俯仰采用液压缸驱动,手抓的驱动同样采用液压驱动。第2章 机械手的总体设计2.1 机械手的组成及各部分关系概述机械手由三大部分(机械部分、传感部分、控制部分)六个子系统(驱动系统、机械结构系统、感受系统、机器人-环境交互系统、人机交互系统、控制系统)组成。机械结构系统:机器人的机械结构又主要包括末端操作器、手腕、手臂、机身(立柱)。驱动系统:驱动器是把从动力源获得的能量变换成机械能,使机器人各关节工作的装置,常见的驱动形式有步进电机驱动、直流电机驱动、交流电机驱动、液压驱动、气压驱动以及近些年出现的一些特殊的新型驱动(例如超声波驱动、磁致伸缩驱动、静电驱动等)。控制系统:机器人的控制方式多种多样,根据作业任务不同,主要可分为点位控制方式(PTP)、连续轨迹控制方式(CP)、力(力矩)控制方式和智能控制方式。2.2 机械手的设计分析2.2.1 设计要求 该机械手的动作流程:初始位姿手爪松开抓住物体机身转动手臂向上运动手臂进行伸长手腕上下俯仰放下物体手腕归位手臂回缩手臂向下归到原位机身回转回到初始位姿。 2.2.2 总体设计任务分析(1) 结构形式的设计: 机械手常见的运动形式有1)直角坐标型2)圆柱坐标型3)球坐标(极坐标)型4)关节型(回转坐标)型5)平面关节型五种。圆柱坐标型是由三个自由度组成的运动系统,工作空间为圆柱形,它与直角坐标型比较,在相同的空间条件下,机体所占体积小,而运动范围大。直角坐标型,其运动部分的三个相互垂直的直线组成,其工作空间为长方体,它在各个轴向的移动距离可在坐标轴上直接读出,直观性强,易于位置和姿态的编程计算,定位精度高,结构简单,但机体所占空间大,灵活性较差。球坐标型,它由两个转动和一个直线组成,即一个回转,一个俯仰和一个伸缩,其工作空间图形唯一球体,它可以做上下俯仰动作并能够抓取地面上的东西或较低位置的工件,具有结构紧凑、工作范围大的特点,但是结构比较复杂。关节型,这种机器人的手臂与人体上肢类似,其前三个自由度都是回转关节,这种机器人一般由和大小臂组成,立柱与大臂间形成肘关节,可使大臂作回转运动和使大臂作俯仰运动,小臂作俯仰摆动,其特点是工作空间范围大,动作灵活,通用性强,能抓取靠近机座的工件。平面关节型,采用两个回转关节和一个移动关节,两个回转关节控制前后、左右运动,而移动关节控制上下运动。这种机器人在水平方向上有柔顺度,在垂直方向上有较大的刚度,它结构简单,动作灵活,多用于装配作业中,特别适合中小规格零件的插接装配。综上,本次设计中采用回转坐标型。(2) 自由度的确定:自由度(Degrees of Freedom),指机器人所具有的独立坐标轴运动的数目。在运动形式上分为为直线运动P,为旋转运动R。自由度数的多少反映了这种机械手能完成动作的复杂程度,根据对机械手必须完成的动作的研究,设计五个自由度的机械手即可完成所规定的工作任务。(3) 驱动方式的选择:1)驱动系统有液压驱动2)气压驱动3)电机驱动4)机械联动四种,其中液压驱动和气压驱动较为通用。液压驱动:结构紧凑、动作平稳、耐冲击、耐振动、防爆性好。而且液压技术比较成熟,具有动力大、力惯量比大、快速响应高、易于实现直接驱动等特点。气压驱动:具有速度快、系统结构简单、造价较低、维修方便、清洁等特点,适用于中小负载的系统中,但对速度很难进行精确控制,且气压不可太高,所以抓举能力较低,难于实现伺服控制。电机驱动:步进或伺服电机可用于程序复杂、运动轨迹要求严格的小型通用机械手; 异步电机、直流电机适用于抓重大、速度低的专用机械手;电源方便,响应快,驱动力较大,信号检测、传递、处理方便,控制方式灵活,安装维修方便。但控制性能差,惯性大,不易精确定位。机械联动:动作可靠,动作范围小,结构比较复杂,适用于自由度少、速度快的专用机械手。并且,同其他转动方式相比较,传动功率相同时,液压传动装置的重量轻,体积紧凑,可实现无级变速,调速范围大。运动件的惯性小,能够频繁顺序换向,传动工作平稳,系统容易实现缓冲吸着震,并能自动防止过载。与电气配合,容易实现动作和操作自动化,与微电子技术和计算机配合,能够实现各种自动控制工作。液压元件基本已经上系列化、通用化和标准化,利于CAD技术的应用、提高工效,降低成本。容易达到较高的单位面积压力,较小的体积可获得较大的出力(推力或转距)。液压系统介质的可压缩性小,工作较平稳,可靠,并可实现较高的位置精度。液压传动中,力,速度和方向比较容易实现自动控制。液压装置采用油液做介质,具有防锈性和自润滑效能,可以提高机械效率,使用寿命长。综上,本次设计采用液压驱动。(4) 控制方式的选择:1)点位控制方式(PTP)2)连续轨迹控制方式(CP)3)力(力矩)控制方式 4)智能控制方式。点位控制的特点是只控制工业机器人末端执行机构在作业空间中某些规定的离散点上的位姿。控制时只要求工业机器人快速、准确地实现相邻各点之间的运动,而对达到目标点的运动轨迹不做任何规定。这种控制方式的主要技术指标是定位精度和运动所需时间。由于其控制方式易于实现,常应用于上下料、搬运、点焊等工业机器人。连续轨迹控制的特点是连续的控制工业机器人末端执行器在作业空间的位姿,要求其严格按照预定的轨迹和速度在一定的精度要求内运动,而且速度可控,轨迹光滑且运动平稳。这种控制方式的主要技术指标是工业机器人末端操作器位姿的轨迹跟踪精度及平稳性。常用于弧焊、喷漆、去毛边和检测作业机器人。力(力矩)控制方式常用于准确定位并要求使用适度的力或力矩来完成装配、抓放物体等工作。智能控制方式是通过传感器获得周围环境的知识,并根据自身内部的知识库相应做出决策。采用智能控制技术的机器人具有较强的环境适应性及自学能力,技术难度及成本要求都比较高。综上,本次设计采用点位控制。2.2.3 总体方案拟定因为本机械手工作范围大,位置精度要求高。考虑本机械手工作要求的特殊情况,本设计采用悬臂式五自由度的机械手: 自由度具体分配如下:1)手臂回转自由度。拟采用液压马达来实现,液压马达通过齿轮传动通过带动与之相连的缸体也发生转动,从而实现机身的回转。其行程角度靠挡块和限位行程开关来调整。2)手臂俯仰自由度。机器人的手臂俯仰运动,一般采用活塞油(气)与连杆机构联用来实现。设计中拟采用单活塞杆液压缸来实现,缸体采用尾部耳环与机身连接,而其活塞杆的伸出端则与手臂通过铰链相连。其行程大小靠挡块和限位行程开关来调整。3)手臂伸缩自由度。由于油缸或气缸的体积小,质量轻,因而在机器人手臂结构中应用较多。设计中拟采用单活塞杆液压缸来实现,其伸缩行程大小靠挡块和限位行程开关来调整。4)手腕俯仰自由度。拟采用液压缸来实现。其行程角度靠挡块和限位行程开关来调整。5)手抓的抓取自由度。拟采用液压缸来实现。其行程角度靠挡块和限位行程开关来调整。第3章 机械手结构的设计分析3.1 末端操作器的设计分析工业机器人的末端操作器是机器人直接用于抓取、握紧、吸附专用工具等进行操作的部件,根据被操作工件的形状、尺寸、重量、材质及表面形态各有不同,其形式也多种多样,大部分末端操作器的结构是根据特定的工件专门加工的,常用的有四类:1)夹钳式取料手2)吸附式取料手3)专用操作器及转换器4)仿生多指灵巧手。夹钳式取料手是工业机器人最常用的一种末端操作器形式,在流水线上应用广泛。它一般由手指、驱动机构、传动机构、连接与支承元件组成,工作机理类似于常用的手钳。吸附式取料手靠吸附力取料,根据吸附力的不同分为气吸附和磁吸附两种。吸附式取料手应用于大平面(单面接触无法抓取)、易碎(玻璃、磁盘)、微小(不易抓取)的物体。因为专用操作器及转换器和仿生多指灵巧手的技术难度及成本要求都比较高,故在此不多做介绍。3.2 手腕的设计分析机器人手腕是连接末端操作器和手臂的部件,它的作用是调节或改变工件方位,因而它具有独立的自由度,以使机器人末端操作器适应复杂的动作要求。此处手腕需实现手部的翻转(Roll)动作,腕部结构主要体现在手部相对于臂部的旋转运动上。3.3 手臂的设计分析手臂是机器人执行机构中重要的部件,它的作用是将被抓取的工件运动到给定的位置上。手臂的结构要紧凑小巧,才能使手臂运动轻快、灵活。手臂一般有伸缩运动、左右回转运动、升降(或俯仰)运动三个自由度。在一般情况,手臂的伸缩和回转、俯仰均要求匀速运动,但在手臂的起动和终止瞬间,运动是变化的,为了减少冲击,要求起动时间的加速度和终止前速度不能太大,否则引起冲击和振动。伸缩运动一般采用直线液压缸驱动,俯仰运动大多采用伸缩单作用(单活塞杆)驱动,而回转运动则大多用回转缸或齿条缸来实现。本设计采用单作用(单活塞杆)缸来实现手臂的伸缩。为了增加手臂的刚性,防止手臂在伸缩运动时绕轴线转动或产生变形,手臂的伸缩机构需设置导向装置,或设计方形、花键等形式的臂杆。根据手臂的结构、抓重等因素,为了使抓取时不产生偏重力矩使抓取可靠,本设计中采用四根导向柱的臂伸缩结构。这种结构的特点是行程长,抓重大,而工件不规则时还可以防止产生过大的偏重力矩。简图如下:图3-1 四导向杆式手臂机构简图从图中可以比较清楚地看到手臂伸缩油缸结构及导向杆的安放方式以及手臂与其他部件的连接点。手臂俯仰运动采用单作用(单活塞杆)缸来驱动。直线油缸的缸底与机身通过铰链相连,而油缸活塞杆的伸出端则与臂部铰接,这样当压力油进个油缸时就驱动活塞杆往复运动,通过活塞杆的运动就使与其相连的手臂形成了俯仰的运动。由于俯仰油缸是采用底部耳环摆动式直线缸,所以在活塞杆往复运动的同时,缸体可在平面内摆动。采用摆动马达来实现手臂的回转。对于悬臂式的机械手,还要考虑零件在手臂上的布置,就是要计算手臂移动零件时的重量对回转、升降、支承中心的偏重力矩。偏重力矩对手臂运动很不利。偏重力矩过大,会引起手臂的振动,在升降时还会发生一种沉头现象,也会影响运动的灵活性,严重时手臂与立柱会卡死。所以在设计手臂时要尽量使手臂重心通过回转中心,或离回转中心要尽量地近,以减少偏重力矩。为减少转动惯量:1)可减少手臂运动件的轮廓尺寸2)减少回转半径,在安排机械手动作顺序时,先缩后回转(或先回转后伸),尽可能在较小的前伸位置进行回转动作3)在驱动系统中设有缓冲装置。3.4 机身和机座的设计分析机身,又称为立柱,是支撑手臂的部件,并能辅助实现手臂的升降、回转或俯仰运动。它是机器人的基础部分,起支承作用。对固定机器人,直接连接在地面基础上,对移动式机器人,则安装在移动机构上。机器人机座可分为固定式和行走式两种,一般工业机器人的机座为固定式。固定式机器人的机身直接连接在地面基础上,也可以固定在机身上。此处要求机械手的工作范围比较小,故设计为固定式机器人,机身与机座用螺柱连接,机座用螺栓固定在地面基础上。机身设计要求:1)刚度和强度大,稳定性好2)运动灵活,导套不宜过短,避免卡死3)驱动方式适宜,结构布置合理。第4章 机械手各部件的载荷计算4.1 设计要求分析本课题设计的多自由度机械手采用关节型坐标系、全液压驱动,具有手臂伸缩、俯仰、回转、抓取和手腕回转五个自由度。执行机构相应由手部抓取机构、手腕回转机构、手臂伸缩机构、手臂俯仰机构、手臂回转机构和手抓的抓取机构等组成,每一部分均由液压缸驱动与控制。4.2 手指夹紧机构的设计设计中采用四指V形结构,指面光滑,避免工件被夹持部位的表面受损。手指的驱动采用弹簧复位(单活塞杆)单作用液压缸,传动机构采用斜楔杠杆式复合回转传动,并在杠杆上装有张紧弹簧,以保证手指夹紧驱动液压缸的复位。手指厚度根据需要夹持的工件设定,V形指合拢后的的尺寸为工件被夹持部位直径的外接正六边形,保证了机械手工作时的可靠性。手指加在工件上的夹紧力,是设计手部结构的主要依据。夹紧力必须克服工件重力所产生的载荷以及工件运动状态变化所产生的载荷(惯性力或惯性力矩),以使工件保持可靠的夹紧状态。手指对工件的夹紧力计算: (4-1)式中: 安全系数,通常取1.22.0;工作情况系数,主要考虑惯性力的影响。可估算: = (4-2)其中:重力加速度;运载工件时重力方向的最大上升加速度,可计算: (4-3)运载工件时重力方向的最大上升速度,0.07。系统达到最高速度的时间,一般取0.30.5。方位系数,根据手指与工件形状以及手指与工件位置不同进行选定。0.91.1。被抓取工件所受重力()。计算可得:手指夹紧由单作用液压缸驱动实现,则手指夹紧缸的载荷为:1604.3 手臂伸缩机构载荷的计算 手臂伸缩采用双作用液压缸实现,臂部作水平伸缩运动时,首先要克服摩擦阻力,包括油缸与活塞之间的摩擦阻力及导向杆与支承滑套之间的摩擦阻力等,还在克服启动过程中的惯性力。其驱动力可可按下式计算: (4-4)式中: 各支承处的的摩擦阻力(N),其大小可按下式估算: (4-5)式中: G运动部件所受的重力(); 外载荷作用于导轨上的正压力(),其大小可按下式计算: (4-6) 摩擦系数,取0.1,详见机械设计手册表23.4-1;启动过程中的惯性力(),其大小可按下式估算: (4-7)式中: 重力加速度,取9.8;速度变化量()。如果臂部从静止状态加速到工作速度时,则这个过程的速度变化量就等于臂部的工作速度。启动或制动时间(),一般为0.1。对轻载低速运动部件取小值,对重载高速部件取大值,行走机械一般取0.51.5。经过计算得:=4.4 手臂俯仰机构载荷的计算当手臂从水平位置成仰角时或从角度恢复为水平时的加速或减速过程,铰接活塞杆的载荷(即俯仰直线缸驱动力)达到最大。其在垂直方向上的最大线速度为0.07,加速时间为0.1,由于升降过程一般不是等加速运动,故最大驱动力矩要比理论平均值大一些,一般取平均值的1.3倍。则手臂俯仰油缸载荷: (4-8)式中: 手臂俯仰缸所支撑的重量(),由下式可得: 手臂俯仰缸的活塞杆的加速度。经过计算得:4.5 机身摆动机构载荷力矩的计算臂部回转运动驱动力矩,应根据启动时产生的惯性力矩与回转部件支承处的摩擦力矩来计算。回转动时,由于起动过程中不是等加速运动,所以最大驱动力矩比理论上平均值大一些,计算时一般取1.3倍。计算时还要考虑液压马达的机械效率(0.90.99),驱动力矩按下式计算: (4-9)式中: 摩擦力矩(包括各支承处的摩擦力矩) ();起动时惯性力矩(),一般按下式计算: (4-10)其中: 臂部对其回转轴线的转动惯量();速度变化量();回转运动起动或制动所需的时间(s), 一般为0.10.5s。对轻载低速运动部件取小值,对重载高速部件取大值,行走机械一般取=0.51.5m/s。在计算臂部部件的转动惯量时,可将形状复杂的零件简化为几个形状简单的零件,分别求出各简单零件的转动惯量。若零、部件沿臂部伸缩运动方向上的轴向尺寸与其重心到回转轴线的距离比值不超过二分之一时,一般可把它当作质点来计算,这样简化计算的误差不超过5%。经过计算可得如下结果:=4.6 初选系统工作压力压力的选择要根据载荷大小和设备类型而定。还要考虑执行元件的装配空间、经济条件及元件供应情况等的限制。在载荷一定的情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看也不经济;反之,压力选得太高,对泵、缸、阀等元件的材质、密封、制造精度也要求很高,必然要提高设备成本。一般来说,对于固定的尺寸不太受限制的设备,压力选低一些,行走机械重载设备压力要选得高一些。选择可参考一下两表:表4-1 按载荷选择工作压力载荷/KN50工作压力/MPa80时,导向套滑动面长度(0.61.0)。为了减少加工难度,一般液压缸缸筒长度不应大于内径的2030倍。根据以上原则并联系实际工况取夹紧液压缸缸筒长度160。缸筒是液压缸中最重要的零件,它承受液体作用的压力,其臂厚需进行计算。活塞杆受轴向压缩负载时,为避免发生纵向弯曲,还要进行压杆稳定性验算。中、高压缸一般用无缝钢管作缸筒,大多数属薄壁微,即10时,其最薄处的壁厚用材料力学薄壁圆筒公式计算壁厚,即: (5-8)式中:缸筒内最高工作压力;缸筒材料的许用应力,由下式可计算:= (5-9)式中: 材料的抗拉强度,查机械手册得610MPa;安全系数,当10时一般取=5;当10时,称为厚壁筒,高压缸的缸筒大都属于此类。计算可得夹紧液压缸壁厚10。5.2 手臂伸缩机构结构尺寸的确定手臂伸缩机构采用的双作用活塞缸,由上章已知其载荷力大小。同理,经过计算可得夹紧液压缸的液压缸内径145,活塞杆直径101.5。按照GB/T2348-1993标准,圆整其值为160,活塞杆直径100。根据以上原则并联系实际工况取手臂伸缩液压缸缸筒长度2000,壁厚36。5.3 手臂俯仰机构结构尺寸的确定手臂俯仰机构采用的双作用活塞缸,由上章已知其载荷力大小。同理,经过计算可得夹紧液压缸的液压缸内径101,活塞杆直径70.7。按照GB/T2348-1993标准,圆整其值为100,活塞杆直径70。根据以上原则并联系实际工况取手臂俯仰液压缸缸筒长度630,壁厚28。5.4 机身摆动机构的确定机身摆动选用的液压马达,由上一章已知其载荷力矩的大小。液压马达的排量为/r根据实际工况设计中选取GM05型的液压马达。5.5 强度校核活塞杆在稳定工况下,如果只受轴向的推力和拉力,可以近似地用直杆承受拉压负载的简单强度计算公式进行计算: (5-10)式中: 活塞杆的作用力,单位; 活塞杆直径,单位; 材料的许用应力,查机械设计手册为600MPa。下面各液压缸的活塞杆校核如下: 故,所以满足强度要求。5.6 弯曲稳定性校核活塞杆受轴向压力作用时,有可能产生弯曲,当此轴向力达到临界值时,会出现压杆不稳定现象学,临界值的大小与活塞杆长和直径,以及缸的安装方式等有关。只有当活塞杆的计算长度10时,才进行活塞杆的纵向稳定性计算。所以只需校核手臂伸缩液压缸,其计算按材料力学的有关公式进行。使缸保持稳定性的条件为: (5-11) (5-12) (5-13) (5-14)式中: 缸承受的轴向压力(); 安全系数,一般取3.56; 液压缸安装及导向系数,见机械设计手表20-6-17。 活塞杆弯曲失稳的临界压力(),可由下式计算: L液压缸支承长度();活塞杆横截面惯性矩(),可由下式计算: 实际弹性模数,可由下式计算: 材料的弹性模数(),钢材; 材料组织缺陷系数,钢材一般取a; 活塞杆截面不均匀系数,一般取b; 活塞杆直径()。计算可得:4.9 所以弯曲强度满足要求。第6章 液压系统的设计6.1 制定基本方案设计合理的液压系统才能确保全面、可靠地实现设计任务书中规定的各项技术指标,通常做法是先选定系统类型,分别选择各项要求的基本回路,最后再将各基本回路组合成完整的液压系统。由于影响液压系统方案的因素很多,设计中仍主要靠经验来完成。6.1.1 基本回路的选择1)压力源回路:压力源回路又称动力源回路,其功能是向液压系统提高满足执行机构需要的压力和流量。压力源回路是由油箱、油箱附件、液压泵、电动机(发动机)、安全阀、过滤器、单向阀等组成。设计中采用高低压双联泵液压源回路。2)压力控制回路:压力控制回路是以控制系统及各支路压力,使之完成特定功能的回路。压力控制回路的种类很多,在一个工作循环的某一段时间内各支路均不需要新提供的液压能时,考虑采用泄卸荷回路;当某支路需要稳定的低于动力油源的压力时,应考虑减压回路;当载荷变化较大时,应考虑多级压力控制回路;当有惯性较大的运动部件时容易产生冲击时,应考虑缓冲或制动回路;在有升降运动部件的液压系统中应考虑平衡回路等。本设计中采用通常将调压、限压回路与油源回路合并考虑。3)速度控制回路:液压系统原理图的核心是调速回路,调速方案和调速回路对其它回路的选择具有决定性的影响。本系统是功率较小的,故选用简单的进油路节流阀调速。同样的道路选用单泵供油,力求较好的经济性。在机械手的升降缸采用单伸出杆时,为了使往复运动速度一致时要采用两个单向节流阀来实现。若只用一个节流阀调速时,则应将节流阀放到换向阀下面,并按有杆腔进油达到最大允许速度,但仍然符合设计要求。4)方向控制回路:控制执行元件的启动、停止或改变运动方向或控制液流通断或改变方向均需采用方向控制回路。实现方向控制的基本方法有:阀控主要是采用控制阀分配液流;泵控是采用双向定量泵或双向变量泵改变液流的方向和流量;执行元件控制是采用双向液压马达来改变液流方向。本设计中采用阀控。6.2 液压元件的选择6.2.1 液压泵的选择油泵作为液压系统的动力元件,是液压系统的心脏,它把原动机(电动机、柴油机等)输入的机械能(转矩和角速度)转换为液压能(压力和流量)输出,为执行元件提供压力油。液压泵的性能好坏直接影响到液压系统的工作特性和可靠性,在液压传动中占有及其重要的地位。液压泵按排量能否改变分为定量泵和变量泵;按进、出油口的方向是否可变分为单向泵和双向泵;按运动构件的形状和运动方式分为齿轮泵、叶片泵、柱塞泵、螺杆泵。选用液压泵的原则和根据有:(1) 是否要求变量 要求变量选用变量泵,其中单作用叶片泵的工作压力较低,仅适用于机床系统。(2) 工作压力 目前各类液压泵的额定压力都有所提高,但相对而言,柱塞泵的额定压力最高。(3) 工作环境 齿轮泵的抗污染能力最好,因此特别适于工作环境较差的场合。(4) 噪音指标 属于低噪音的液压泵有啮合齿轮泵、双作用叶片泵和螺杆泵,后两种泵是瞬时理论流量均匀。(5) 效率 按结构形式分,轴向柱塞泵的总效率最高;而同一种结构的液压泵,排量大的总效率高;同一排量的液压泵,在额定工况(额定压力、额定转速、最大排量)时总效率最高,若工作压力低于额定压力或转速低于额定转速、排量小于最大排量,泵的总效率将下降,甚至下降很多。因此,液压泵应在额定工况(额定压力和额定转速)或接近额定工况是条件下工作。目前在机械手上多数采用齿轮泵和叶片泵,而从流量特性来看,多数是采用定量泵。设计中采用PV2R双联叶片泵。已知系统压力为8MPa,选取PV2R12,查机械设计手册表20-5-33选取其前泵排量V1为33mL/r,后泵排量V2为12mL/r,其允许最高转速1800r/min,最低转速750r/min。该泵使用普通液压油时前泵的最高使用压力为14MPa,后泵为16MPa,满足系统要求的8MPa。前泵的流量: (6-1) 式中: 泵的排量();泵的额定转速()。 后泵的流量: (6-2)式中: 泵的排量();泵的额定转速()。6.2.2 液压泵所需电机功率的确定 (6-3)式中: 油泵所需要的电动机功率;油泵的最大工作压力();油泵最大流量();油泵总效率,一般叶片泵0.750.85;齿轮泵0.60.8;柱塞泵0.750.9。前泵所需电机功率: 后泵所需电机功率:6.2.3 液压阀的选择液压阀的作用是控制液压系统的油流方向、压力和流量,从而控制整个液压系统的全部功能,如系统的工作压力,执行机构的动作程序,工作部件的运动速度、方向,以及变换频率,输出力或力矩等等。液压阀的性能是否可靠,是关系到整个液压系统能否正常工作的问题。液压阀的分类有:1)压力控制阀:主要控制执行机构输出力或输出转矩的大小,并确定液压泵及整个液压系统的工作负载,在过载时起到保护系统的作用。2)流量控制阀:根据执行机构运动速度的要求供给所需流量。3)方向控制阀:控制油流的通、切断或改变油流的方向,以控制执行机构的运动方向等。三类阀还可以相互组合,成为复合阀,以减少管路的连接,式结构更为紧凑,提高系统效率。液压传动系统,选择合适的液压阀,是使系统设计合理,性能优良,安装简便,维修容易,并保证该系统正常工作的重要条件。根据本液压的设计要求,液压阀的选择按定压力和额定流量大于系统最高工作压力和通过该阀的最大流量的原则。选择换向回路的核心是选择换向阀的形式,以实现对于换向精度及换向平稳性的要求。一般来说,换向性能要求高,应选用机动换向阀或液动换向阀,若对于换向性能无特别要求,应选用电磁阀。根据本设计液压系统要求,夹紧缸换向选用两位两通电磁阀,其他缸全部选用三位四通电磁换向阀。为防止俯仰缸因自重自由下滑和伸缩缸在仰起一定角度后的自由下滑,都采用单向顺序阀来平横。为保证夹紧缸夹持工件的可靠性,选用液控单向阀保压和锁紧。手臂升降缸为立式液压缸,为支承平衡手臂运动部件的自重,采用了单向顺序阀的平衡回路。6.2.4 液压辅助元件的选择原则(1)蓄能器:蓄能器在液压系统中是用来储存、释放能量的装置。其可作为辅助液压源在短时间里提供一定数量的压力油,满足系统对速度、压力的要求。(2)滤油器:过滤器的功能是清除液压系统工作介质中固体污染物,使工作介质保持清洁,延长元器件的使用使用寿命、保证液压元件工作性能可靠。选择过滤器需考虑如下几点:1)根据使用目的选择过滤器的种类,根据安装位置情况选择过滤器的安装形式。2)过滤器应具有足够打的通油能力,并且压力损失要小。3)过滤精度应满足液压系统或元件所需的清洁度要求。4)滤芯使用的滤材应满足所使用工作介质的要求,并且有足够的强度。5)过滤器的强度及压力损失是选择时需重点考虑的因素,安装过滤器后会对系统造成局部压降或产生背压。6)滤芯的更换及清洗应方便。7)应根据系统需要考虑选择合适的滤芯保护附件。8)结构应尽量简单、紧凑、安装形式合理。9)价格低廉。3)管道尺寸的确定1.管道内径计算: (6-4)式中: 通过管道内的流量(); 管内允许流速()见表。根据所得的内径尺寸,按下表标准系列选取相应的管子。表6-1 软管内径尺寸系列2.53.256.381012.5161920(22)2531.538405051表6-2 硬管外径系列45681012(14)16(18)20(22)25(28)32(34)38*40(42)502.管道壁厚计算: (6-5)式中: 管道内最高工作压力(); 管道内径(); 管道材料的需用应力(),; 管道材料的抗拉强度(); n安全系数,对钢管来说,p7MPa时,取n=8;p17.5MPa时,取n=4。管头连接螺纹根据油管外径选取。(3)液压缸进出油口直径的确定缸的进出油口直径可用下式求得: (6-6)式中: q液压缸配管内的流量;v液压缸配管内液体的平均流量(一般取v=45m/s)。 计算得出的数值并按液压的相关标准进行圆整。6.2.5 油箱容量的确定在确定油箱尺寸时,一方面要满足系统供油的要求,还要保证执行元件全部排油时,邮箱不能溢出,以及系统中最大可能充满油时,油箱的油位不低于最低限度。根据油箱容量的经验公式: (6-17)式中: 液压泵每分钟排除压力油的容积(); 经验系数,见下表。表6-3 经验系数a系统类型行走机械低压系统中压系统锻压系统冶金系统a12245761210计算可得油箱容量:选用规格为250L的油箱。6.2.6 液压原理图液压系统各执行机构的动作均由电控系统发信号控制相应的电磁换向阀或电液动换向阀,按程序依次步进动作,液压系统的工作顺序是由控制各个液压缸换向阀的电磁铁的得失电来工作的。执行机构的定位和缓冲是机械手工作平稳可靠的关键。从提高生产率来说,希望机械手正常工作速度越快越好,但工作速度越高,启动和停止时的惯性力矩就越大,这不仅会影响到机械手的定位精度,严重时还会损伤机件。因此为达
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:多自由度机械手设计【5自由度】【7张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-272945.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!