抛丸机斗式提升机的设计说明书_第1页
抛丸机斗式提升机的设计说明书_第2页
抛丸机斗式提升机的设计说明书_第3页
抛丸机斗式提升机的设计说明书_第4页
抛丸机斗式提升机的设计说明书_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

I摘要斗式提升机是一种被普通采用的垂直输送设备, 用于运送各种散状和碎块物料,例如水泥,沙,土煤,粮食等,并广泛地应用于建材、电力、冶金、机械、化工、轻工、有色金属、粮食等各工业部门。斗式提升机的结构特点是:被运送物料在与牵引件连结在一起的承载构件料斗内,牵引件绕过各滚筒,形成包括运送物料的有载分支和不运送物料的无载分支的闭合环路,连续运动输送物料。驱动装置与头轮相连,使斗式提升机获得动力并驱使运转。本次设计主要针对 TD400 的整体结构设计,驱动滚筒的设计,料斗的设计,斗式提升机输送能力的计算,驱动轮转速以及功率的确定,电机、减速机等主要零部件的选择及驱动轴的设计校核,包括斗式提升机总装图以及零件图,二级减速器总装图的 Auto-CAD 图纸的绘制。通过计算选取方案,因工作效率要求较高,故排除 TD250,而选取工作效率更高的 TD400 斗式提升机。同样考虑到工作要求,选取深料斗,以满足工作需要。关键词:斗式提升机,滚筒,驱动装置,减速器,张紧装置,牵引件IIABSTRACTThe bucket elevator is a common vertical transportation equipment for the delivery of a variety of bulk and fragments of materials such as cement, sand, soil, coal, grain, and is widely used in building materials, electricity, metallurgy, mechanical, chemicalindustry, light industry, nonferrous metals, grain and other industrial sectors. Bucket Elevator is the structural characteristics: the materials being transported together with the traction of carrying components of the hopper, the traction around the drum pieces, forming a closed loop containing a branch of a delivery of materials and a branch of the non-delivery of materials, the Movement for conveying materials. The design of the main TD400 overall structural design, the design of the drive pulley, the design of the hopper, the calculation of bucket elevator transmission capacity, the determination of drive wheel speed and power, the select of motor, reducer, belt and other parts and the drive shaft design verification, including the bucket elevator final assembly drawing and part drawing, the Auto-CAD final assembly drawing of the secondary gear reducer. Selected by calculations, due to the high efficiency requirements, ruling out TD250, and selecting TD400 bucket elevator. Given the same job requirements, Ichoose deep hopper to finish my work.KEY WORDS: Bucket elevator,drum,drives ,reducer ,tensioning device,traction componentsIII目录摘要 .IABSTRACT .II第一章 绪论 .11.1 抛丸清理机及斗式提升机的简介 .1第二章 本课题介绍及设计理论 .32.1 概述 .32.2 斗式提升机工作原理 .32.2.1 斗式提升机分类 .32.2.2 斗式提升机的装载和卸载 .42.2.3 斗式提升机的部件 .62.2.4 斗式提升机的工作原理 .7第三章 提升机主要参数确定及主要结构设计 .83.1 斗式提升机输送能力的计算与选择 .83.1.1 输送能力的计算 .83.1.2 料斗的计算和选择 .103.2.1 卸料方式 .113.2.2 驱动轮转速的确定 .123.2.3 驱动轮直径的确定 .143.3 运动阻力和驱动功率的计算 .143.3.1 牵引构件张力计算 .143.3.2 驱动功率计算 .17第四章 斗式提升机传统系统的设计计算 .194.1 电动机的选择计算 .194.1.1 选择电动机的类型和结构形式 .194.1.2 确定电动机的转速 .204.1.3 确定电动机的功率和类型 .204.2 减速器的设计 .214.2.1 减速器的计算 .214.2.2 传动比的分配 .214.2.3 计算各轴参数 .224.2.4 各输入轴的功率 .224.2.5 各轴的输入转矩 .224.2.6 高速级齿轮的传动设计 .234.2.7 低速级齿轮的传动设计 .244.2.8 轴的设计 .254.3 驱动轴的设计计算和工艺要求 .284.3.1 轴的结构设计 .284.3.2 轴的强度校核计算 .29第五章 提升机其他装置的设计 .31IV5.1 输送带的设计 .315.2 张紧装置的设计 .315.3 反转装置的设计 .325.4 罩壳的设计 .325.5 轴承的选择 .33参考文献 .34致谢 .35毕业设计小结 .361第一章 绪论1.1 抛丸清理机及斗式提升机的简介抛丸清理机是利用高速回转的叶轮将弹丸抛向滚筒内连续翻转的工件上, 而达到清理工件的目的。抛丸清理机是利用钢铁丸送至高速旋转的圆盘上,利用离心力的作用,使高速抛出的钢丸撞击零件表面,达到光饰的目的,抛丸清理机能使零件表面产生压应力,而且没有含硅粉末,对环境污染小。抛丸清理机主要用途如下:抛丸清理机使零件表面产生压应力,可提高它们的疲劳强度及抗拉应力腐蚀的能力;抛丸清理机可对扭曲的薄壁零件进行校正;抛丸清理机的工艺代替一般的冷、热成型工艺,对大型薄壁铝制零件进行成型加工,不仅可避免零件表面有残余拉应力,而且可获得对零件有利的压应力。应注意的是:抛丸清理机处理过的零件的使用温度不能太高,否则压应力在高温下会自动消失,因而失去预期的效果。它们的使用温度由零件的材质决定,对于一般钢铁零件约为 260290,铝制零件只有 170。斗式提升机是一种被普遍采用的垂直输送设备,用于运送各种散状和块状物料,例如水泥,沙,土,煤,粮食等,并广泛用于建材、电力、冶金、机械、化工、轻工、有色金属、粮食等各工业部门。 国内斗式提升机的设计制造技术是 50 年代由苏联引进的,知道 80 年代几乎没有太大的发展。再此期间,各行各业就使用中存在的一些问题也做过一些改进。从 80 年代以后,随着国家改革开放和经济发展的需要,一些大型企业及重点工程项目引进了一定数量的斗式提升机,从而促进了国内提升机的发展。2直到近来,斗式提升机的大型化包括大输送能力、大单机长度和大输送倾角等几个方面。不少国家正在探索长距离、大运量连续输送物料的更完善的输送机结构。随着国民经济的发展运输机械行业在引进、吸收、消化了世界各国斗式提升机的最新技术,并结合我国实际情况,使得新材料、新工艺、新产品不断地出现。例如:由于自动焊接技术的出现,箱形结构的垂直输送机越来越受到人们的欢迎。由于计算机技术的推广应用,利用计算机进行辅助设计(CAD)和辅助制造(CAM ),使输送机的整体布置更趋优化,基本零件更加紧凑耐用。由于自控技术和数显技术的广泛普及,使运输机的控制和安全保护装置大为改善,保证了作业的安全性和可靠性。现在许多企业能够批量生产各种类型的输送机械,不仅满足了国内市场的需求,部分产品还打入了国际市场。斗式提升机的优点是,结构比较简单,能在垂直方向或倾角较小范围内运输物料而横断面尺寸小,占地面积小,能在全封闭罩壳内运行工作,不扬灰尘,避免污染环境,必要时还可以把斗式提升机底部插入料堆中自行取料。与其它斗式提升机相比,带式斗式提升机更具有速度高,运转均匀而安静,抗磨性高,耐腐蚀等优点。斗式提升机也有一些缺点,过载的敏感性大,必须均匀给料,料斗和牵引构件较易破坏。机内较易形成粉尘爆炸的条件,斗和皮带容易磨损,被输送的物料受到一定的限制,只适宜输送粉末和中块状的物体。正确选用料斗的尺寸和形状、运动速度、滚筒与链轮尺寸以及适合于物料物理性质和提升机工作条件的机首和底座尺寸是斗式提升机能否正常工作的条件。在设计提升机前,必须分析它的工作条件,特别是对于调整提升机,应研究物料在料斗内的运动及从物料中抛出的情况。根据设计题目及设计内容的要求,我们选取的取料方式为掏取式,选取钢丝绳芯胶带作为牵引构件,料斗密集排列,卸料方式为离心式,尾部采用重锤张紧装置。此设计方案在以前设计的提升机基础上对其进行改进,发扬其缺点,进一步完善提升机的性能,提高其工作能力。3第二章 本课题介绍及设计理论2.1 概述此次设计是研究 TD400 斗式提升机的工作原理、性能和特点,采用理论联系实际的方法,研究影响斗式提升机效率的影响因素,进行必要的结构改进,提出结构的方案并实施设计。同时,进行相关结构参数和工艺参数的设计与计算、总体方案设计,总体装配以及传动等部件和相关零部件设计及绘制。2.2 斗式提升机工作原理2.2.1 斗式提升机分类(1)按牵引件分类: 斗式提升机的牵引件有环链、板链和胶带等几种。环链的结构和制造比较简单,与料斗的连接也很牢固,输送磨琢性大的物料时,链条的磨损较小,但其自重较大。板链结构比较牢固,自重较轻,适用于提升量大的提升机,但铰接接头易被磨损,胶带的结构比较简单,但不适宜输送磨琢性的物料,普通胶带物料温度不超过,钢绳胶带允许物料温度达,耐热胶带允许物料温度达,环链、板链输送物料的温度可达。斗提机最广泛使用的是带式(TD) ,环链式(TH)两种型式。用于输送散装水泥时大多采用深型料斗。如 TD 型带式斗提机离心式卸料或混合式卸料适用于堆积密度小于 1.5t/m3 粉状、粒状物料。TH 环链斗提机采用混合式或重力式卸料用于输送堆积密度小于 1.5t/m3 粉状、粒状物料。(2)按卸载方式分类: 4斗式提升机可分为:离心式卸料、重力式卸料和混合式卸料等三种形式。离心式卸料的斗速较快,适用于输送粉状、粒状、小块状等磨琢性小的物料;重力式卸料的斗速较慢,适用于输送块状的,比较重大的,磨琢性大的物料,如石灰石、熟料等。2.2.2 斗式提升机的装载和卸载斗式提升机的装载方式有三种,即流入式装载如图 1-1、掏取式装载如图1-2 和混合式装载,流入式装载主要用于输送大块和磨琢性大的物料,散料均匀落入料斗中,形成比较稳定的料流,进料口下部应有一定的高度,采用该方式装载时一般料斗布置较密;以防止物料在料斗之间撒落,料斗的运行速度不得超过 1m/s。掏取式主要用于输送粉状、粒状、小块状等磨琢性小的散状物料,由于在掏取时不会产生很大的阻力,所以允许料斗的运行速度较高,为0.82m/s。介于两者之间采用混合式。图 1-1 流入式 图 1-2 掏取式卸载方式有离心式、重力式及混合式三种。离心式卸料如图 1-3(b)料斗的运行速度较高,通常取为 12m/s。如欲保持这种卸载必须正确选择驱动轮的转速和直径,以及卸料口的位置。其优点是:在一定的料斗速度下驱动轮尺寸为最小,卸料位置较高,个料斗之间的距离可以减小,并可提高卸料管高度,当卸料高度一定时,提升机的高度就可减小,缺点是:料斗的填充系数较小,对所提升的物料有一定的要求,只适用于流动性好的粉状、粒状、小块状物料。5重力式卸载如图 1-3(a)适用于卸载块状、半磨琢性或磨琢性大的物料,料斗运行速度为 0.4-0.8m/s 左右,需配用带导向槽的料斗。其优点是:料斗装填良好,料斗尺寸与极距的大小无关。因此允许在较大的料斗运行速度之下应用大容积的料斗,主要缺点是:物料抛出位置较低,故必须增加提升机头的高度。物料在料斗的内壁之间被抛卸出去,这种卸料方式称为离心-重力式卸载。常用于卸载流动性不良的粉状物料及含水分物料。料斗的运行速度为 0.6-0.8m/s 范围,常用链条做牵引件。6图 1-3 卸料方式(a )重力式;( b)离心式;(c)混合式。2.2.3 斗式提升机的部件斗式提升机的主要部件有:驱动装置、出料口、上部区段、料斗、牵引件、中部机壳、下部区段、张紧装置、进料口、检视门。驱动装置由电动机、减速器、逆止器或制动器及联轴器组成,驱动主轴上装有滚筒或链轮。大提升高度的斗提机采用液力偶合器,小提升高度时采用弹性联轴器。使用轴装式减速机可省去联轴器简化安装工作,维修时装卸方便。料斗通常分为浅斗、深斗和有导向槽的尖棱面斗。浅斗前壁斜度大深度小,适用于运送潮湿的和流散性不良的物料。深斗前壁斜度小而深度大,适用于运送干燥的流散性好的散粒物料。有导向侧边的夹角形料斗前面料斗的的两导向侧边即为后面料斗的卸载导槽,它适用于运送沉重的块状物料及有磨损性的物7料,由于流动性好且干燥,用深斗较合适,卸载时,物料在料斗中的表面按对数螺线分布,设计离心卸料的料斗底部打若干个气孔,使物料装载时有较高的填充量,并且卸料时更完全。牵引构件为一封闭的挠性构件,多为环链、板链或胶带。新标准中规定了TD 型、 TH 型、 TB 型三种结构型式的提升机,将分别替代国内原 D 型、HL 型、PL 型三种机型。张紧装置有螺杆式与重锤式两种。带式斗提机的张紧滚筒一般制成鼠笼式壳体,以防散料粘集于滚筒上。斗式提升机可采用整体机壳,也可在上升分支和下降分支分别设置机壳。后者可防止两分支上下运动时在机壳空气扰动。在机壳上部设有收尘法兰和窥视孔。在底部设有料位指示,以便物料堆积时自动报警。胶带提升机还需设置防滑监控及速度检测器等电子仪器,以保证斗提机的正常运行。2.2.4 斗式提升机的工作原理固接着一系列料斗的牵引构件(环链、链轮)环绕在提升机的头轮与底轮之间构成闭合轮廓。驱动装置与头轮相连,使斗式提升机获得动力并驱动运转。张紧装置与底轮相连,使牵引构件获得必要的初张力,以保证正常运转。物料从提升机的底部供入,通过一系列料斗向上提升至头部,并在该处实现卸载,从而实现在竖直方向内运送物料。斗式提升机的料斗和牵引构件等行走部分以及头轮、底轮等安装在全密封的罩壳之内。综合此次设计的提升高度与工作等要求,本提升机选用普通胶带作为牵引件。8第三章 提升机主要参数确定及主要结构设计根据设计要求,选择斗式提升机的类型是胶带斗式提升机,即 TD 型斗式提升机。3.1 斗式提升机输送能力的计算与选择3.1.1 输送能力的计算斗式提升机的输送能力计算可按下式计算:Q=qv=3.6qv (3-1 )式中 Q提升机的输送能力,t/h; V提升速度,m/s; q提升物料线载荷,kg/m。 提升物料线载荷可按下式计算:q= (3-2)式中 提升机单个料斗容积,m 3; 料斗内物料填充系数; 物料的堆积密度,kg/m 3; 提升机料斗间距,m。将式(2-2 )带入式(2-1 )得Q=3.6 (3-3)由于供料不均匀,实际生产能力一般小于计算生产能力,即:Q 实 = (3-4)9式中 K供料不均匀系数,取 K=1.21.6。取=0.85 ,=1.5t/,v=2m/s则 Q 实 =3.60.851.52/1.5=100t/h根据表 3-1,选用 TD400 型斗式提升机。表 3-1 TD 提升机系列产品性能斗宽(mm)斗型 料斗容量i0(L)料斗间距a(mm)i0/a(L/mm )Q 1.95 4.88H 3.554008.88Zd 3.75 7.50315Sd 5.85001.601Q 3.07 6.40H 5.648011.67Zd 5.9 10.54400Sd 9.450016.79Q 4.84 9.68H 9.050018.00Zd 9.3 14.88500Sd 14.962523.84表 3-2 TD400 型斗式提升机的主要技术性能料斗形式 Q H Zd Sd离心式 68 110输送量(m3/h)混合式斗宽(mm) 400斗容(L ) 3.07 5.6 5.9 9.4斗距(mm) 480 500宽度 400层数(最大值)5传动滚筒直径(mm)630改向滚筒直径(mm)630根据上表中的数值核算输送能力:10Q=3.6 =3.69.4/0.52=172.5150t/h所选用的斗提机的输送能力大于实际生产中所要求的输送能力,所以选用的 TD400 型斗提机能够满足要求。3.1.2 料斗的计算和选择料斗是提升机的承载构件,通常是用厚度=26mm 的钢板焊接或冲压而制成的。为了减少料斗边唇的磨损,常在料斗边唇外焊上一条附加的斗边。根据物料特性和装、卸载方式不同,料斗常制成三种形式:深斗、浅斗和有导向槽的尖棱面斗。深斗是具有导向侧边的的三角形料斗,在提升机中采用一个接一个的密集布置,卸料时,前一个料斗的两导向侧边和前壁形成后一个料斗的卸载导槽,这种料斗适用于输送较重的,半磨琢性的或磨琢性大的块状物料。料斗的运行速度较低,使在重力作用下倾斜到前面料斗的导槽中。D 型和 HL 型斗式提升机多采用深斗或浅斗,PL 型斗式提升机采用有导向槽的尖棱面斗。本次设计的提升机主要是用于抛丸清理机的丸料运输,物料干燥松散,多为散状,所以采用深斗。料斗的形状尺寸如图 2-1 所示。离心式卸料的提升机,料斗间距的选取原则是:当料斗卸料时,从料斗中抛出的物料不至于赶上走在前面的料斗,以免卸出的物料碰在前面料斗的斗壁上造成回料。通常取料斗间距 a0=(2.53)h,h 为斗的深度。在本次设计中,取料斗间距a0=500mm。11图 3-1 料斗3.2.1 卸料方式斗式提升机的料斗是在行经驱动轮时在头部侧面卸料的,其卸料方式分为三种形式:离心式、离心-重力式、重力式。当料斗直线上升时,料斗中的物料只受重力 G 的作用。当料斗绕入驱动轮后,当直线运动变为旋转运动,料斗内的物料同时受重力 G 和向心力 F 的作用。即:G=mg (3-5)F=mr=m/r (3-6)式中 m料斗内物料的质量,kg; g重力加速度,m/s 2; 料斗内物料重心的角速度,rad/s; r回转半径(即料斗内物料的重心 M 到滚动中心 O 的距离) ,mm; 12v料斗内物料重心的线速度,m/s。G、F 合力的大小和方向随着料斗的位置而改变,但其延长线与滚筒垂直中心线始终都相交于同一点 P,P 点叫做极点。极点 P 到回转轴心 O 的距离 OP=h称为极距。料斗中物料重心 M 至滚筒中心 O 的距离 MO=r 称为回转半径。由相似三角形性质得,=g从而h=g因为v=所以h=g= (3-7)式中h极距,m; n驱动轮转速,r/min。由上式可知,极距 h 只与驱动轮(滚筒)的转速有关,而与料斗在驱动轮上的位置及物料质点在斗内的位置无关。当驱动轮转速一定时,极距 h 也就确定。随着转速 n 的增大,极距 h 则减小,此时离心力增大;反之,当 n 减小时,h 值增大,而离心力减小。设料斗外缘至回转中心的半径为 r1,驱动轮的半径为 r2,当极距 hr 2 时,极点 P 位于驱动轮的圆周内,离心力的值要远远大于重力的值,而料斗内的物料将沿着斗的外壁运动,物料作离心式卸载。3.2.2 驱动轮转速的确定对离心力卸料的斗式提升机,驱动轮的转速大小对能否正确卸料有很大的关系。转速过小,物料不易抛卸出去,必有一部分物料在重力作用下落入机壳内。转速过大,物料受过大离心力作用而撞击在机壳壁上,被撞回后落入机壳内,不仅造成回料现象,而且会使壳壁很快磨损。因此,确定合适的转速是一13个很重要的问题。当料斗通过驱动轮时,物料受到的离心力的大小是固定不变的,而它的方向却随着料斗位置的不同而改变。当物料的重力与离心力的大小相等,方向相反,则物料在此二力作用下呈悬浮状态,料斗壁不再有压力,与斗壁不再有压力,与斗壁也没有摩擦力发生,出现这种情况的速度称为临界转速。由于,G=F,mg=m所以,=rg用 v=代入得:() 2=rg即n2=900= (3-8)由式(2-7 )得:n2= (3-9)由式(2-8 )与式(2-9 )得:=1然而,一般只有堆积密度小、颗粒小又均匀的物体(如谷物、小麦等)才用这种临界速度进行卸载。在工业中往往使离心力小于重力,这样卸料最完全。即:1令K0=系数 K0 一般在 12 之间选取,常取 K0=1.5.若 K0=1.5 时,n=。驱动轮的实际转速一般比上式计算的值减小 10%12%。由于斗宽为 400mm,所以初选滚筒的直径 D=630mm,故初步选 r2=0.40m,带速 v=2.0m/s,则n=61r/min则h=0.241m14可知h=0.241r2=0.40m故离心式卸料的方式合适,选取物料的卸料方式为离心式卸载。3.2.3 驱动轮直径的确定带式提升机驱动滚筒的直径:D=2(r-t-c) (3-10)式中 r回转半径,即料斗内物料重心到滚筒中心的距离,m;t胶带厚度,m;c料斗中物料重心与斗背间的距离,m,c=;a斗幅。该直径还需与选定的胶带层数相适应,以免胶带绕过滚筒时产生过大的内应力。一般取:D=(100125)i式中 D驱动滚筒直径,mm; i胶带层数。所以滚筒直径为 630mm,改向滚筒直径为 500mm。3.3 运动阻力和驱动功率的计算3.3.1 牵引构件张力计算斗式提升机所需的驱动功率,决定于牵引构件运动时所克服的一系列阻力,其中主要有:(1)物料沿牵引构件运动方向的重力分量;(2)当牵引构件绕过轮时,各部分摩擦力; 15(3)料斗掏取物料时的阻力。如图 3-2 所示的垂直斗式提升机计算简图中,1、2、3、4 各点张力分别用S1、S 2、S 3、S 4表示,由分析知,1 点的张力最小,3 点的张力最大图 3-2 斗式提升机为了计算各点的张力,可利用逐点张力计算法进行计算,即牵引构件在轮廓上沿运行方向的每一点的张力等于前一点的张力与这两点之间区段上的阻力之和。因此,提升机各点的张力 S1、S 2、S 3、S 4可分别计算如下。(1)2 点上的张力可按下式计算:S2=S1+W12+W0 (3-11)式中S1最小张力, N; W12尾轮阻力,N,W 12=(0.050.07 )S 1;W0掏取物料阻力, N,W 0=q。掏取物料阻力的大小与许多因素有关,除与 v、q 之有关外,还与物料的粒度和性质等有一定的关系。因此,实际掏取阻力值需根据经验和实验计算确定。(2)3 点上的张力可按下式计算:S3=S2+W23 ( 3-12)式中16W23提升段阻力,N,W 23=W0(q+q 0)H; q0每米长度内牵引构件和料斗的质量,kg/m,q 0K2Q;K2系数,见表 3-2; H提升机高度,m。表 3-2 系数 K2 值(3)4 点上的张力可按下式计算:S4=S1+W41 (3-13 )式中 W41下降段阻力,N, W41=q0H。 对于带式牵引构件,还应满足尤拉公式:S3=S4 (3-14 )式中 摩擦系数;牵引构件在轮上的包角。的值见表 3-3表 3-3 的值(4)驱动轮处的阻力可按下式计算:17W34=(0.030.05 ) (S 3+S4) (3-15)为了计算方便,在要求不太精确时,可用简易算法进行计算。对于垂直提升机,稳定运动状态下的牵引构件的最大静张力 Smax,可近似地按下式计算:Smax1.15H(q+K1q0) (3-16)式中K1考虑装有料斗的牵引构件的运动阻力和在上、下部滚筒上的弯折阻力的系数,其中包括掏取物料的阻力,见表 3-4。由式(3-16 )得Smax=S3=1.157(23.97+2.53.5172.5)=12.34KN由式(3-12 )得,S2=S3W23=12.34KN(23.97+3.5172.5)7=7.95KN由式(3-11 )得,S1=S2W12W0=7.95KN0.06S123.97=2.88KN由式(3-13 )得,S4=S1+W41=2.88KN+3.5172.57=7.11KN查表 3-3,取=0.25,=2.193,得,S4=15.59KNS3=12.34KN故能够满足摩擦力的要求。表 3-4 K1 、K 2 系数的值3.3.2 驱动功率计算(1)驱动轴上的圆周力P0=S3S4+W34=12.347.11+0.05(12.34+7.11)=6.20KN18(2)计算功率N0=6.20=12.4kw(3) 选用电机功率N=(K /)N 0 (3-17)式中 K功率储备系数,当 H20m 时,K =1.15; 减速器传动效率;链轮或皮带轮传动效率所以,由式(3-17)得,N=(K /)N 0 =12.4=19.98kw19第四章 斗式提升机传统系统的设计计算传动系统包括电动机、联轴器、减速机、传动轴。斗式提升机的传动系统简图如图 4-1 所示。图 4-1 传动系统简图4.1 电动机的选择计算4.1.1 选择电动机的类型和结构形式电动机选择,选择电动机包括选择电动机类型、结构形式、功率、转速和型号。电动机的类型和结构形式应根据电源种类(直流或交流)、工作条件(环境、20温度等)、工作时间的长短(连续或间歇)及载荷的性质、大小、起动性能和过载情况等条件来选择。工业上一般采用三相交流电动机。Y 系列三相交流异步电动机由于具有结构简单、价格低廉、维护方便等优点,故其应用最广。当转动惯量和启动力矩较小时,可选用 Y 系列三相交流异步电动机。在经常启动、制动和反转、间歇或短时工作的场合(如起重机械和冶金设备等),要求电动机的转动惯量小、过载能力大,因此,应选用起重及冶金用的 YZ 和 YZR 系列三相异步电动机。电动机的结构有开启式、防护式、封闭式和防爆式等,可根据工作条件来选择。Y 系列电动机(摘自 JB/T8680.11998)为全封闭自扇冷式笼型三相异步电动机,是按照国际电工委员会(IEC)标准设计的,具有国际互换性的特点。用于空气中不含易燃、易炸或腐蚀性气体的场所。适用于电源电压为 380V 无特殊要求的机械上,如机床、泵、风机、运输机、搅拌机、农业机械、破碎机等。也用于某些需要高启动转矩的机器上,如压缩机。4.1.2 确定电动机的转速同一功率的异步电动机有同步转速 3000、1500、1000、750r/min 等几种。一般来说,电动机的同步转速愈高,磁极对数愈少,外廓尺寸愈小,价格愈低;反之,转速愈低,外廓尺寸愈大,价格愈贵。当工作机转速高时,选用高速电动机较经济。但若工作机转速较低也选用高速电动机,则这时总传动比增大,会导致传动系统结构复杂,造价较高。所以,在确定电动机转速时,应全面分析。在一般机械中,用得最多的是同步转速为 1500r/min 或 1000r/min 的电动机。4.1.3 确定电动机的功率和类型电动机的功率选择是否合适,对电动机的正常工作和经济性都有影响。功率选得过小,不能保证工作机的正常工作或使电动机长期过载而过早损坏;功率选得过大,则电动机价格高,且经常不在满载下运行,电动机效率和功率因数都较低,造成很大的浪费。电动机功率的确定,主要与其载荷大小、工作时间长短、发热多少有关。21对于长期连续工作的机械,可根据电动机所需的功率 Pd 来选择,再校验电动机的发热和启动力矩。选择时,应使电动机的额定功率 Pe 稍大于电动机的所需功率 Pd,即 PePd。对于间歇工作的机械, Pe 可稍小于 Pd。在第三章中,计算出的 Pd=19.98kW,因为电动机的额定功率 Pe 要稍大于电动机的所需功率 Pd,所以取电机的额定功率为 22kW,电源电压为 380V,同步转速为 1500r/min,满载转速为 1470r/min,所选电机型号为 Y180L-4。4.2 减速器的设计4.2.1 减速器的计算前面计算的轴上滚筒的转速为:n1=61r/min所选电机的满载转速为:n2=1470r/min所以,传动比为:i=24根据实践经验, 设计 ZQ 型减速机。此种减速机为圆柱齿轮减速箱,其特点为:(1) 减速机采用通用设计方案,可根据实际需要,变型为行业专用的非标齿轮箱; (2) 此减速器内置有逆止器; (3) 此减速器可用于正反两转。4.2.2 传动比的分配传动比的分配原则:各级传动尺寸协调,承载能力接近,两个大齿轮直径接近以便润滑。已知,i 总 =i 减 =i 高 i 低 =24通常 i 高 =(1.21.3)i 低则取,i 高 =5.4,i 低 =4.4224.2.3 计算各轴参数(1)各轴转速轴转速:n 1=n 电 =1470r/min轴转速:n 2=n1/i 高 =272.2r/min轴转速:n 3=n2/i 低 =61.9r/min(2)各轴输入功率=)4=0.9730.990.984=0.8334.2.4 各输入轴的功率轴:p 1=p=220.99=21.78kw轴:p 2=p1=20.70kw轴:p 3=p2=19.88kw4.2.5 各轴的输入转矩Td=9550=145.9Nm轴:T 1=145.90.99=144.4Nm轴:T 2=144.45.40.980.97=741Nm轴:T 3=7414.40.98=3101Nm轴轴的输出功率以及扭矩为输入值乘轴承效率 0.98。运动和动力参数如表 4-1表 4-1 运动和动力参数功率(kw) 扭矩(Nm)轴名 转速(r/min)传动比i效率电动机轴22 145.9 1470 0.99轴 21.78 21.34 144.4 141.5 1470 0.99轴 20.70 20.29 741 726.2 272.2 5.4 0.97轴 19.88 19.48 3101 3039 61.9 4.4 0.97234.2.6 高速级齿轮的传动设计综合考虑,初选 8 级精度。两级圆柱齿轮的大小齿轮材料均选用 45 钢调制处理。大齿面硬度为220HBS,小齿面硬度为 270HBS,=590MPa,=450MPa。(1)确定许用应力取最小安全系数 SF=1.25,S H=1.取区域系数 ZH=2.5,弹性系数 ZE=189.8 = 590/1.0=590MPa = ( 0.7)/1.25=252MPa(2)按齿面接触强度设计计算查设计手册,取载荷系数 K=1.4,齿宽系数=0.8小齿轮上的转矩T1=9.55106=0.14106Nmm初选螺旋角,取=15d177.58mm齿数取 Z1=20,则 Z2=5.420=108法向模数 mn=3.74取 mn=4中心距 a=265.04m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论