会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文翻译英文版--反应注射成型过程中熔体流动前沿的PETROV-GALERKIN有限元分析.pdf外文翻译英文版--反应注射成型过程中熔体流动前沿的PETROV-GALERKIN有限元分析.pdf -- 5 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

PergamonComputersFluidsVol.24,No.1,pp.5562,1995Copyright01995ElsevierScienceLtd0045793094000204PrintedinGreatBritain.Allrightsreserved00457930/959.500.00PETROVGALERKINFINITEELEMENTANALYSISFORADVANCINGFLOWFRONTINREACTIONINJECTIONMOLDINGNITINR.ANTURKARFordResearchLaboratory,FordMotorCompany,P.O.Box2053,MD3198,Dearborn,MI481212053,U.S.A.Received4August1993inrevisedform4May1994AbstractAnumericalschemeforcomputingtheadvancementofaflowfrontandrelatedvelocity,pressure,confersionandtemperaturedistributionsduringmoldfillinginreactioninjectionmoldingRIMisdescribedinthiswork.IntheRIMprocess,theconvectivetermintheenergyequationisdominant.Therefore,thenumericalschemehasincorporatedaPetrovGalerkinfiniteelementmethodtosuppressspuriousoscillationsandtoimproveaccuracyofthecalculations.Theotherfeatureofthenumericalschemeisthattheflowfrontlocationsarecomputedsimultaneouslywithprimaryvariablesbyusingasurfaceparameterizationtechnique.Thenumericalresultscomparewellwiththereportedexperimentaldata.ImprovedaccuracyobtainedbythisnumericalschemeintheflowfrontregionisexpectedtoassistinthepredictionsofthefiberorientationsandthebubblegrowthinRIM,whicharedeterminedprimarilybytheflowfrontregion.I.INTRODUCTIONReactioninjectionmoldingRIMisawidelyusedprocesstomanufactureexteriorfasciasintheautomobileindustry.Inthisprocess,aprepolymerizedisocyanateandapolyol/aminemixturearemixedtogether,andinjectedintoamold,wherepolymerizationoccurs.Afountainfloweffectintheadvancingflowfrontregionduringthemoldfillingstageplaysanimportantroleindeterminingtheresidencetimeofthefluidelementsandincontrollingthefiberorientationsinthefinalproduct11.Anaccuratesimulationofthisflowfront,however,posesachallengingproblem.Evolvingflowdomainwithadvancingflowfrontrequiresupdatingofthenumericalgridsandpredictionofthemovingboundaryateverytimestep.Lowthermalconductivityofthematerial,highflowratesintheRIMprocess,andhighlyexothermicrapidreactionsresultinconvectiondominatedenergytransportequation,whichneedsaspecialnumericaltreatment.Besides,movingcontactlinesnearthewallsneedsuitableboundaryconditionsthatdonotintroducenumericalinstability.AnumericalschemethatincorporatesallthesecomplexfeaturesoftheRIMprocessisrequiredforaccuratepredictionsneartheflowfrontregion.Previousstudieseitherhavemadesimplifyingassumptionsregardingtheflowfrontregion2l,orhavenotcomparedtheirresultswiththeexperiments5,6.Inthispaper,wedescribeanumericalschemeindetail,whichwilladdresstheabovementionedcomplexities,and.presentthereleventresultsthathighlightthenumericalschemerefertoourearlierwork7forthedetaileddiscussionofthegoverningequationsandadditionalresults.Noaprioriassumptionsaremadeinthenumericalschemeregardingtheshapeofthenewfrontorthevelocitydistributionintheflowdomain.Afreesurfaceparameterizationtechniqueisused,inwhichtheshapeoftheflowfrontiscalculatedsimultaneouslywithotherfieldvariables,suchaspressure,velocitiesandconversion,byincorporatingkinematicboundaryconditionatthesurfaceoftheflowfrontasoneofthegoverningequations.AconventionalGalerkinfiniteelementtechniqueisnotoriousforitsnumericalinstabilityinconvectiondominatedtransportproblems8.Theresultingspuriousoscillationscanbeusuallyeliminatedbymeshrefinement.However,fortransientproblemdescribedhere,meshrefinementisanimpracticalandexpensivealternative.Theotheralternativesincludevariousupwindingschemes9121,amethodofcharacteristics6,13,141,andaGalerkin/leastsquarestechnique151.Althoughtheconservativemethods,suchasmethodsofcharacteristicsandGalerkin/leastsquarestechniquesaremoreaccurate,asimplePetrovGalerkinupwindingmethodiseasierto5556NITINR.ANTURKARimplementandcosteffective,particularlyforatransientprobleminvestigatedinthiswork.Therefore,suchaschemeisimplementedherefollowingAdornatoandBrown9tosuppressnumericalinstabilitywithoutresolvingtoextremelyrefinedmeshes.ThegoverningequationsarepresentedbrieflyinSection2,andthenumericalmethodisdescribedindetailinSection3.ThetypicalresultsofthemoldfillingstageoftheRIMprocessinatwodimensionalrectangularplaquearepresentedinSection4.Theresultsarealsocomparedwiththereportedexperimentaldata2,andwiththenumericalresultsobtainedbyusingconventionalGalerkinfiniteelementmethod.2.GOVERNINGEQUATIONSThelumpedkineticrateexpressionforpolymerizationreactionsinRIMis16,171riA,expE,/RTCr,1where,Ciistheisocyanateconcentration,Tthetemperature,Rthegaslawconstant,mtheorderofthereaction,E,theactivationenergyofthereaction,andA,therateconstant.Theviscositydependsontheconversionandtemperature,andisexpressedintheformofCastroMacoskoviscosityfunction2,X,TrlXIITA,expiBXi,2whereXistheisocyanateconversion,X,thegelconversion,andA,,,E,,AandBaretheconstants.Forconstantthermalpropertiesanddensityofthereactivemixture,andfornegligiblemoleculardiffusion,thedimensionlessgoverningequationsare,continuityequationv.vo3conservationofmomentumequationRev.VvpV.IvrcjGz7,,vVXDak.lXmolebalanceequation45conservationofenergyequationGzgvVTVTBrrcjVvDarc,lXmL.16where,visthevelocityvector,qtherateofstraintensor,tthetime,pthepressure,andk,isthedimensionlessrateconstant,definedasexpE,/Rl/Tl/T,.TheequationsaremadedimensionlessusingtheaveragevelocityV,halfofthethicknessofthemoldH,andthetemperatureT,andtheviscosityqOrX0,TT,attheinletofthemold.AllthedimensionlessgroupsandtheirdefinitionsarelistedinTable1.Theboundaryconditionsintermsofdimensionlessvariablesare1.atthewallsv,,,,0noslip,TT,,,,2.atthemidplaneaTjay0,Jay0,V,03.attheinletvfullydevelopedflow,T1,XX,4.atthecontactlinenPI20fullslip5.attheflowfrontn.PI20forcebalance,n.vah/at0kinematicconditionTable1.Dimensionlessgroupsingoverningequations,whereAH,istheheatofreaction,AT,,,theadiabatictemperaturerise,andC,,theinitialconcentrationofisocyanateGZGraetznumberVHpC,lkReReynoldsnumberHVlrloKviscosityratio41BrBrinkmannnumbertoVlkT,DaDamkohlernumberAH,HC/kT,A,expE,/RTTadbadiabatictemperatureriseAT,,,IT,Flowfrontadvancementinreactioninjectionmolding57wherea.,andvYarethecomponentsofthevelocityvectorv,IItheunitnormalvector,rtheextrastresstensor,hthelocationvectoroftheflowfrontandTwal,thedimensionlesstemperatureatthemoldwall.Thedetailsofincorporatingtheboundaryconditionsinthenumericalanalysisareexplainedinthenextsection.3.NUMERICALANALYSISInthefiniteelementformulationtheunknownvelocities,temperatureandconversionareexpandedintermsofthebiquadraticbasisfunctions4,thepressureintermsofthebilinearbasisfunctionsll/iandtheflowfrontshapehintermsofthequadraticbasisfunctions7wherelandqarethecoordinatesinisoparametrictransformation,definedasi1ilintheisoparametricdomain1L5,where,PeisthelocalelementPecletnumberVA/D,Atheelementsizeandc,sisthecubicpolynomial5/85lt1.Theindexi1correspondstothevertexnodes,andi258NITINR.ANTIJRKARcorrespondstothecentroidnodesintheelement.Thestandardonedimensionalconvectiondiffusionproblemhasexactsolutionatthenodesif25,9cPe2tanhPe/2l3/PecothPe/4X/PecothPe/4,1lac216/Pe4cothPe/4.1lbInatwodimensionalproblem,thetensorialproductofequations10and11providesthefunctioncintheweightingfunctionsdescribedinequation9.ThelocalPecletnumberiscomputedforeachthreenodegroupbasedontheaveragevelocitiesattherelevantboundariesinthetwodimensionalelement9.Therearesixsuchgroupsthreeinthexdirection,andthreeintheydirectionandthus,thereare12upwindingparametersE.ThecalculationsofthePecletnumberinvolvelineardistances,whichessentiallyneglectthecurvilinearsidesoftheelements.However,itisagoodapproximationsinceflowfrontisnotseverelydeformedinourproblem.Thediffusivitiesarel/GzfortheenergyequationandisK/Rforthemomentumequation.ThePetrovGalerkinweightedresidualequationsare,RV.vdlO,sRLIvRegv.VvWfdV12yPIKVWidVssn.pIlcfWdSO,13sBrrcjVvDak,lXWdV1sVT.VWdVsn.VTWdSO,15VSRIsn.vah/41dS0.16swhere,VistheflowdomainandStheflowboundary.Theboundarytermsappearintheenergyandmomentumequationsbecausedivergencetheoremisappliedtothehigherorderterms.TheresidualsR,,R,,R,,R,andR,correspondtothevariablesp,v,X,Tandh,respectively.ThePetrovGalerkinweightingfunctionsareusedonlyformomentumandenergyequationsduetothepresenceofconvectiontermsintheseequations.BeforeintegratingtheaboveequationsusinganinepointGaussianquadrature,theequationsaremappedintheisoparametricdomainreferto26fordetailsandtheboundaryconditionsareapplied.TheessentialboundaryconditionsforvandTatthewallsforv,TandXattheinletofthemoldandforvYatthemidplaneaxisofsymmetryareappliedbysubstitutingtheboundaryconditionsfortheequations.Thenaturalboundaryconditions,namelythesymmetryconditionsatthemidplane,thefullslipzerofrictionconditionatthecontactpoint,andthezeroforceatthefreesurfaceareimplementedbysubstitutingtheboundarytermsintheresidualequations.Thekinematicboundaryconditionattheflowfrontisincorporatedasthegoverningequationforpredictingtheflowfrontlocations.Theweakformofenergyequationisextendedtotheflowfrontboundarybyevaluatingtheboundaryterms,insteadofbyimposinganyunknownessentialornaturalboundaryconditions27.Suchfreeboundarycondition,asdenotedbyPapanastasiouetal.27,minimizestheenergyfunctionalamongallpossiblechoices,atleastforvarioustypesofcreepingflows,andhasbeensuccessfullyusedinseveralapplications,includingthosewithhighReynoldsnumbers.Thespatialdiscretizationreducesthetimedependentequations1216toasystemofordinarydifferentialequations,M2Rq0,17
编号:201311171434016602    大小:710.83KB    格式:PDF    上传时间:2013-11-17
  【编辑】
5
关 键 词:
专业文献 学术论文 精品文档 外文翻译
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:16次
淘宝运营上传于2013-11-17

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

专业文献   学术论文   精品文档   外文翻译  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5