




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PergamonComputers&FluidsVol.24,No.1,pp.55-62,1995Copyright01995ElsevierScienceLtd0045-7930(94)00020-4PrintedinGreatBritain.Allrightsreserved0045-7930/95$9.50+0.00PETROV-GALERKINFINITEELEMENTANALYSISFORADVANCINGFLOWFRONTINREACTIONINJECTIONMOLDINGNITINR.ANTURKARFordResearchLaboratory,FordMotorCompany,P.O.Box2053,MD3198,Dearborn,MI48121-2053,U.S.A.(Received4August1993;inrevisedform4May1994)Abstract-Anumericalschemeforcomputingtheadvancementofaflowfrontandrelatedvelocity,pressure,confersionandtemperaturedistributionsduringmoldfillinginreactioninjectionmolding(RIM)isdescribedinthiswork.IntheRIMprocess,theconvectivetermintheenergyequationisdominant.Therefore,thenumericalschemehasincorporatedaPetrov-Galerkinfiniteelementmethodtosuppressspuriousoscillationsandtoimproveaccuracyofthecalculations.Theotherfeatureofthenumericalschemeisthattheflowfrontlocationsarecomputedsimultaneouslywithprimaryvariablesbyusingasurfaceparameterizationtechnique.Thenumericalresultscomparewellwiththereportedexperimentaldata.ImprovedaccuracyobtainedbythisnumericalschemeintheflowfrontregionisexpectedtoassistinthepredictionsofthefiberorientationsandthebubblegrowthinRIM,whicharedeterminedprimarilybytheflowfrontregion.I.INTRODUCTIONReactioninjectionmolding(RIM)isawidelyusedprocesstomanufactureexteriorfasciasintheautomobileindustry.Inthisprocess,aprepolymerizedisocyanateandapolyol/aminemixturearemixedtogether,andinjectedintoamold,wherepolymerizationoccurs.Afountainfloweffectintheadvancingflowfrontregionduringthemold-fillingstageplaysanimportantroleindeterminingtheresidencetimeofthefluidelementsandincontrollingthefiberorientationsinthefinalproduct11.Anaccurates:imulationofthisflowfront,however,posesachallengingproblem.Evolvingflowdomainwithadvancingflowfrontrequiresupdatingofthenumericalgridsandpredictionofthemovingboundaryateverytimestep.Lowthermalconductivityofthematerial,highflowratesintheRIMprocess,andhighlyexothermicrapidreactionsresultinconvection-dominatedenergytransportequation,whichneedsaspecialnumericaltreatment.Besides,movingcontactlinesnearthewallsneedsuitableboundaryconditionsthatdonotintroducenumericalinstability.AnumericalschemethatincorporatesallthesecomplexfeaturesoftheRIMprocessisrequiredforaccuratepredictionsneartheflowfrontregion.Previousstudieseitherhavemadesimplifyingassumptionsregardingtheflowfrontregion2&l,orhavenotcomparedtheirresultswiththeexperiments5,6.Inthispaper,wedescribeanumericalschemeindetail,whichwilladdresstheabove-mentionedcomplexities,and.presentthereleventresultsthathighlightthenumericalscheme(refertoourearlierwork7forthedetaileddiscussionofthegoverningequationsandadditionalresults).Noaprioriassumptionsaremadeinthenumericalschemeregardingtheshapeofthenewfrontorthevelocitydistributionintheflowdomain.Afree-surfaceparameterizationtechniqueisused,inwhichtheshapeoftheflowfrontiscalculatedsimultaneouslywithotherfieldvariables,suchaspressure,velocitiesandconversion,byincorporatingkinematicboundaryconditionatthesurfaceoftheflowfrontasoneofthegoverningequations.AconventionalGalerkinfinite-elementtechniqueisnotoriousforitsnumericalinstabilityinconvection-dominatedtransportproblems8.Theresultingspuriousoscillationscanbeusuallyeliminatedbymeshrefinement.However,fortransientproblemdescribedhere,meshrefinementisanimpracticalandexpensivealternative.Theotheralternativesincludevariousupwindingschemes9-121,amethodofcharacteristics6,13,141,andaGalerkin/least-squarestechnique151.Althoughthe“conservative”methods,suchasmethodsofcharacteristicsandGalerkin/least-squarestechniquesaremoreaccurate,asimplePetrov-Galerkinupwindingmethodiseasierto5556NITINR.ANTURKARimplementandcosteffective,particularlyforatransientprobleminvestigatedinthiswork.Therefore,suchaschemeisimplementedherefollowingAdornatoandBrown9tosuppressnumericalinstabilitywithoutresolvingtoextremelyrefinedmeshes.ThegoverningequationsarepresentedbrieflyinSection2,andthenumericalmethodisdescribedindetailinSection3.ThetypicalresultsofthemoldfillingstageoftheRIMprocessinatwo-dimensionalrectangularplaquearepresentedinSection4.Theresultsarealsocomparedwiththereportedexperimentaldata2,andwiththenumericalresultsobtainedbyusingconventionalGalerkinfiniteelementmethod.2.GOVERNINGEQUATIONSThelumpedkineticrateexpressionforpolymerizationreactionsinRIMis16,171:ri=-A,exp(-E,/RT)Cr,(1)where,Ciistheisocyanateconcentration,Tthetemperature,Rthegas-lawconstant,mtheorderofthereaction,E,theactivationenergyofthereaction,andA,therateconstant.Theviscositydependsontheconversionandtemperature,andisexpressedintheformofCastroMacoskoviscosityfunction2,(X,T)=rl(X)-II(T)=A,exp()(iBXi,(2)whereXistheisocyanateconversion,X,thegelconversion,andA,E,AandBaretheconstants.Forconstantthermalpropertiesanddensityofthereactivemixture,andfornegligiblemoleculardiffusion,thedimensionlessgoverningequationsare,continuityequation:v.v=o;(3)conservationofmomentumequation:Re$+v.Vv=-pV.I+v:(rcj);Gz7,$+v-VX=Dak.(l-X)“;molebalanceequation:(4)(5)conservationofenergyequation:Gzg+vVT=V*T+Brrc(j:Vv)+Darc,(l-X)m;L.1(6)where,visthevelocityvector,qtherate-of-straintensor,tthetime,pthepressure,andk,isthedimensionlessrateconstant,definedasexp(-E,/R)(l/T-l/T,).TheequationsaremadedimensionlessusingtheaveragevelocityV,halfofthethicknessofthemoldH,andthetemperatureT,andtheviscosityqO(=r(X=0,T=T,)attheinletofthemold.AllthedimensionlessgroupsandtheirdefinitionsarelistedinTable1.Theboundaryconditionsintermsofdimensionlessvariablesare1.atthewalls:v,=0(no-slip),T=T,;2.atthemid-plane:aTjay=0,&Jay=0,V,=0;3.attheinlet:v=fullydevelopedflow,T=1,X=X,;4.atthecontactline:n*(-PI+2)=0(full-slip):5.attheflowfront:n.(-PI+2)=0(forcebalance),n.(v-ah/at)=0(kinematiccondition);Table1.Dimensionlessgroupsingoverningequations,whereAH,istheheatofreaction,AT,theadiabatictemperaturerise,andC,theinitialconcentrationofisocyanateGZGraetznumberVHpC,lkReReynoldsnumberHVlrloKviscosityratio41%BrBrinkmannnumbertoV=lkT,DaDamkohlernumber(AH,H*C$/kT,)A,exp(-E,/RT)TadbadiabatictemperatureriseAT,IT,Flowfrontadvancementinreactioninjectionmolding57wherea.,andvYarethecomponentsofthevelocityvectorv,IItheunitnormalvector,rtheextrastresstensor,hthelocationvectoroftheflowfrontandTwal,thedimensionlesstemperatureatthemoldwall.Thedetailsofincorporatingtheboundaryconditionsinthenumericalanalysisareexplainedinthenextsection.3.NUMERICALANALYSISInthefiniteelementformulationtheunknownvelocities,temperatureandconversionareexpandedintermsofthebiquadraticbasisfunctions4,thepressureintermsofthebilinearbasisfunctionsll/iandtheflowfrontshapehintermsofthequadraticbasisfunctions:(7)wherelandqarethecoordinatesinisoparametrictransformation,definedasi=1i=lintheisoparametricdomain(-14+1,-1qL(5),where,PeisthelocalelementPecletnumber(=VA/D),Atheelementsizeandc,(s)isthecubicpolynomial(=(5/8)5(-l)(t+1).Theindexi=1correspondstothevertexnodes,andi=258NITINR.ANTIJRKARcorrespondstothecentroidnodesintheelement.Thestandardone-dimensionalconvec-tiondiffusionproblemhasexactsolutionatthenodesif25,9c(Pe)=2tanh(Pe/2)l+(3/Pe)coth(Pe/4)-(X/Pe)-coth(Pe/4),(1la)c2=(16/Pe)-4coth(Pe/4).(1lb)Inatwo-dimensionalproblem,thetensorialproductofequations(10)and(11)providesthefunctioncintheweightingfunctionsdescribedinequation(9).ThelocalPecletnumberiscomputedforeachthree-nodegroupbasedontheaveragevelocitiesattherelevantboundariesinthetwo-dimensionalelement9.Therearesixsuchgroups(threeinthex-direction,andthreeinthey-direction)andthus,thereare12upwindingparametersE.ThecalculationsofthePecletnumberinvolvelineardistances,whichessentiallyneglectthecurvilinearsidesoftheelements.However,itisagoodapproximationsinceflowfrontisnotseverelydeformedinourproblem.Thediffusivitiesarel/GzfortheenergyequationandisK/Rforthemomentumequation.ThePetrov-Galerkinweightedresidualequationsare,-R:=(V.v)$dl=O,s-RL=IvReg+v.VvWfdV(12)+y-PI+(K+)VWidV-ssn.-pI+(lcf)WdS=O,(13)s-Brrc(j:Vv)-Dak,(l-X)”WdV1+sVT.VWdV-s(n.VT)WdS=O,(15)VS-RI=sn.(v-ah/&)4(+=1)dS=0.(16)swhere,VistheflowdomainandStheflowboundary.Theboundarytermsappearintheenergyandmomentumequationsbecausedivergencetheoremisappliedtothehigher-orderterms.TheresidualsR,R,R,R,andR,correspondtothevariablesp,v,X,Tandh,respectively.ThePetrov-Galerkinweightingfunctionsareusedonlyformomentumandenergyequationsduetothepresenceofconvectiontermsintheseequations.Beforeintegratingtheaboveequationsusinganine-pointGaussianquadrature,theequationsaremappedintheisoparametricdomain(referto26fordetails)andtheboundaryconditionsareapplied.TheessentialboundaryconditionsforvandTatthewalls;forv,TandXattheinletofthemold;andforv
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宿迁职业技术学院《网页设计与制作实验》2023-2024学年第一学期期末试卷
- 陕西科技大学镐京学院《建筑火灾防治与风险评估》2023-2024学年第一学期期末试卷
- 云南弥勒市2024年化学九上期末综合测试模拟试题含解析
- 公路货运行业数字化转型与智能运输管理平台报告
- 旅游业发展趋势及机遇挑战
- 2025届江苏省常州市溧阳市七年级数学第一学期期末达标测试试题含解析
- 河海大学场馆管理办法
- 油污污染考核管理办法
- 内蒙古鸿德文理学院《书法》2023-2024学年第一学期期末试卷
- 法务审计采购管理办法
- 2024-2030年中国DevOps工具行业市场发展趋势与前景展望战略分析报告
- 计算机系统设计及计算机网络专业毕业论文
- (正式版)QB∕T 8049-2024 家用和类似用途微压富氧舱
- 聊城小升初英语试卷
- 物业管理分包协议模板
- 汽轮机辅机检修(第二版)高级工题库
- 卵巢黄体破裂诊治中国专家共识(2024年版)
- 中医护理中药热奄包
- 2024广西钦州市北部湾大学招聘审计处工程审计科科员1人笔试备考题库及答案解析
- 《工业用水软化除盐设计规范》
- 中华民族共同体概论课件专家版10第十讲 中外会通与中华民族巩固壮大(明朝时期)
评论
0/150
提交评论