专题五 机械能考点例析_第1页
专题五 机械能考点例析_第2页
专题五 机械能考点例析_第3页
专题五 机械能考点例析_第4页
专题五 机械能考点例析_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题五:机械能考点例析能的概念、功和能的关系以及各种不同形式的能的相互转化和守恒的规律是自然界中最重要、最普遍、最基本的客观规律,它贯穿于整个物理学中。本章的功和功率、动能和动能定理、重力的功和重力势能、弹性势能、机械能守恒定律是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系实际、生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本章知识。例如:2001年的全国卷第22题、2001年上海卷第23题、2002年全国理综第30题、2003年全国理综第34题、2004年上海卷第21题、2004年物理广西卷第17题、2004年理综福建卷第25题等。同学平时要加强综合题的练习,学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化,对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。一、夯实基础知识1.深刻理解功的概念功是力的空间积累效应。它和位移相对应(也和时间相对应)。计算功的方法有两种:⑴按照定义求功。即:W=Fscosθ。在高中阶段,这种方法只适用于恒力做功。当时F做正功,当时F不做功,当时F做负功。这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。⑵用动能定理W=ΔEk或功能关系求功。当F为变力时,高中阶段往往考虑用这种方法求功。这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。(3).会判断正功、负功或不做功。判断方法有:eq\o\ac(○,1)用力和位移的夹角α判断;eq\o\ac(○,2)用力和速度的夹角θ判断定;eq\o\ac(○,3)用动能变化判断.

(4)了解常见力做功的特点:重力做功和路径无关,只与物体始末位置的高度差h有关:W=mgh,当末位置低于初位置时,W>0,即重力做正功;反之则重力做负功。滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。(5)一对作用力和反作用力做功的特点:eq\o\ac(○,1)一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;eq\o\ac(○,2)一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。2.深刻理解功率的概念(1)功率的物理意义:功率是描述做功快慢的物理量。(2)功率的定义式:,所求出的功率是时间t内的平均功率。(3)功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。(4)重力的功率可表示为PG=mgVy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。3.深刻理解动能的概念,掌握动能定理。(1)动能是物体运动的状态量,而动能的变化ΔEK是与物理过程有关的过程量。(2)动能定理的表述合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔEK.动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。动能定理建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。4.深刻理解势能的概念,掌握机械能守恒定律。1.机械能守恒定律的两种表述⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。对机械能守恒定律的理解:①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功。2.机械能守恒定律的各种表达形式⑴,即;⑵;;用⑴时,需要规定重力势能的参考平面。用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用ΔE增=ΔE减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。5.深刻理解功能关系,掌握能量守恒定律。(1)做功的过程是能量转化的过程,功是能的转化的量度。能量守恒和转化定律是自然界最基本的规律之一。而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。本章的主要定理、定律都可由这个基本原理出发而得到。需要强调的是:功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。(2)复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。突出:“功是能量转化的量度”这一基本概念。eq\o\ac(○,1)物体动能的增量由外力做的总功来量度:W外=ΔEk,这就是动能定理。eq\o\ac(○,2)物体重力势能的增量由重力做的功来量度:WG=-ΔEP,这就是势能定理。eq\o\ac(○,3)物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。eq\o\ac(○,4)当W其=0时,说明只有重力做功,所以系统的机械能守恒。eq\o\ac(○,5)一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。Q=fd(d为这两个物体间相对移动的路程)。二、解析典型问题问题1:弄清求变力做功的几种方法功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1、等值法等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。例1、如图1,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。分析与解:设绳对物体的拉力为T,显然人对绳的拉力F等于T。T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向都不变,所以F做的功可以用公式W=FScosa直接计算。由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为:2、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。例2、如图2所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A、0JB、20πJC、10JD、20J.分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=FΔS,则转一周中各个小元段做功的代数和为W=F×2πR=10×2πJ=20πJ=62.8J,故B正确。3、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。例3、一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少?分析与解:由于车的牵引力和位移的关系为F=103x+f0,是线性关系,故前进100m过程中的牵引力做的功可看作是平均牵引力所做的功。由题意可知f0=0.05×105×10N=5×104N,所以前进100m过程中的平均牵引力:∴W=S=1×105×100J=1×107J。4、用动能定理求变力做功图3例4、如图3所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长L=图3分析与解:物体在从A滑到C的过程中,有重力、AB段的阻力、AC段的摩擦力共三个力做功,重力做功WG=mgR,水平面上摩擦力做功Wf1=-μmgL,由于物体在AB段受的阻力是变力,做的功不能直接求。根据动能定理可知:W外=0,所以mgR-umgL-WAB=0即WAB=mgR-umgL=6(J)5、用机械能守恒定律求变力做功如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。如果求弹力这个变力做的功,可用机械能守恒定律来求解。图4例5、如图4所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0图4分析与解:由于斜面光滑故机械能守恒,但弹簧的弹力是变力,弹力对物体做负功,弹簧的弹性势能增加,且弹力做的功的数值与弹性势能的增加量相等。取B所在水平面为零参考面,弹簧原长处D点为弹性势能的零参考点,则状态A:EA=mgh+mV02/2对状态B:EB=-W弹簧+0由机械能守恒定律得:W弹簧=-(mgh+mv02/2)=-125(J)。h1h1h2图5h1h2图6AB例6、两个底面积都是S的圆筒,放在同一水平面上,桶内装水,水面高度分别为h1和h2,如图5所示,已知水的密度为ρ。现把连接两桶的阀门打开,最后两桶水面高度相等,则这过程中重力所做的功等于.分析与解:由于水是不可压缩的,把连接两桶的阀门打开到两桶水面高度相等的过程中,利用等效法把左管高以上部分的水等效地移至右管,如图6中的斜线所示。最后用功能关系,重力所做的功等于重力势能的减少量,选用AB所在的平面为零重力势能平面,则画斜线部分从左管移之右管所减少的重力势能为:所以重力做的功WG=.问题2:弄清滑轮系统拉力做功的计算方法图7图7例7、如图7所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是()A.100图8F1图8F1F2C.200JD.条件不足,无法确定分析与解析:拉力F做的功等效为图8中F1、F2两个恒力所做功的代数和。即W=F1·S+F2Scos60°,而F1=F2=F=100N,所以W=F·S(1+cos60°)=150J。即B选项正确。问题3:弄清求某力的平均功率和瞬时功率的方法例8、质量为m=0.5kg的物体从高处以水平的初速度V0=5m/s抛出,在运动t=2s内重力对物体做的功是多少?这2s内重力对物体做功的平均功率是多少?2s末,重力对物体做功的瞬时功率是多少?(g取)分析与解:t=2s内,物体在竖直方向下落的高度m,所以有,平均功率W。在t=2s末速度物体在竖直方向的分速度,所以t=2s末瞬时功率W。tVt1t2tVt1t20图9ttttPPPPABCDt1t1t1t1t2t2t2t2t3t3t3t3t3图10分析与解:在0~t1时间内,重物加速上升,设加速度为a1,则据牛顿第二定律可得钢索的拉力F1=mg+ma1,速度Vt=a1t,所以拉力的功率为:P1=m(a1+g)a1t;在t1~t2时间内,重物匀速上升,拉力F2=mg,速度为V1=a1t1,所以拉力的功率为:P2=mga1t1.在t2~t3时间内,重物减速上升,设加速度大小为a2,则据牛顿第二定律可得钢索的拉力F2=mg-ma2,速度V2=a1t1-a2t,所以拉力的功率为:P1=m(g-a2)(a1t1-a2t).综上所述,只有B选项正确。问题4:.机车起动的最大速度问题例10、汽车发动机额定功率为60kW,汽车质量为5.0×103kg,汽车在水平路面行驶时,受到的阻力大小是车重的0.1倍,试求:汽车保持额定功率从静止出发后能达到的最大速度是多少?分析与解:汽车以恒定功率起动时,它的牵引力F将随速度V的变化而变化,其加速度a也随之变化,具体变化过程可采用如下示意图表示:VVF=P/Va=(F-f)/m当a=0时,即F=f时,V达到最大Vm保持Vm匀速由此可得汽车速度达到最大时,a=0,=12m/s小结:机车的速度达到最大时,一定是机车的加速度为零。弄清了这一点,利用平衡条件就很容易求出机车的最大速度。问题5:机车匀加速起动的最长时间问题例11、汽车发动机额定功率为60kW,汽车质量为5.0×103kg,汽车在水平路面行驶时,受到的阻力大小是车重的0.1倍,试求:若汽车从静止开始,以0.5m/s2的加速度匀加速运动,则这一加速度能维持多长时间?分析与解:要维持汽车加速度不变,就要维持其牵引力不变,汽车功率将随V增大而增大,当P达到额定功率P额后,不能再增加,即汽车就不可能再保持匀加速运动了.具体变化过程可用如下示意图表示:而F而F=P额/V当a=0时,即F=f时,V达到最大Vm保持Vm匀速P=FV即P随V增大而增大a=(F-f)/m一定,即F一定当P=P额时,a=(F-f)/m≠0,V还要增大所以,汽车达到最大速度之前已经历了两个过程:匀加速和变加速,匀加速过程能维持到汽车功率增加到P额的时刻,设匀加速能达到最大速度为V1,则此时小结:机车匀加速度运动能维持多长时间,一定是机车功率达到额定功率的时间。弄清了这一点,利用牛顿第二定律和运动学公式就很容易求出机车匀加速度运动能维持的时间。问题6:.机车运动的最大加速度问题。例12、电动机通过一绳子吊起质量为8kg的物体,绳的拉力不能超过120N,电动机的功率不能超过1200W,要将此物体由静止起用最快的方式吊高90m(已知此物体在被吊高接近90m时,已开始以最大速度匀速上升)所需时间为多少?分析与解:此题可以用机车起动类问题的思路,即将物体吊高分为两个过程处理:第一过程是以绳所能承受的最大拉力拉物体,使物体以最大加速度匀加速上升,第一个过程结束时,电动机刚达到最大功率.第二个过程是电动机一直以最大功率拉物体,拉力逐渐减小,当拉力等于重力时,物体开始匀速上升.在匀加速运动过程中加速度为a=m/s2=5m/s2,末速度Vt==10m/s上升的时间t1=s=2s,上升高度为h==10m在功率恒定的过程中,最后匀速运动的速率为Vm==15m/s外力对物体做的总功W=Pmt2-mgh2,动能变化量为ΔEk=mV2m-mVt2由动能定理得Pmt2-mgh2=mVm2-mVt2代入数据后解得t2=5.75s,所以t=t1+t2=7.75s所需时间至少为7.75s.小结:机车运动的最大加速度是由机车的最大牵引力决定的,而最大牵引力是由牵引物的强度决定的。弄清了这一点,利用牛顿第二定律就很容易求出机车运动的最大匀加速度。问题7:应用动能定理简解多过程问题。物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。V0S0αP图11例13、如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为S0V0S0αP图11分析与解:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。设其经过和总路程为L,对全过程,由动能定理得:得问题8:利用动能定理巧求动摩擦因数ABChS1S2α图12例14、如图12所示,小滑块从斜面顶点AABChS1S2α图12分析与解:滑块从A点滑到C点,只有重力和摩擦力做功,设滑块质量为m,动摩擦因数为,斜面倾角为,斜面底边长,水平部分长,由动能定理得:从计算结果可以看出,只要测出斜面高和水平部分长度,即可计算出动摩擦因数。S2S1LS2S1LV0V0图13例15、总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力,如图13所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少?分析与解:此题用动能定理求解比用运动学、牛顿第二定律求解简便。对车头,脱钩后的全过程用动能定理得:对车尾,脱钩后用动能定理得:而,由于原来列车是匀速前进的,所以F=kMg由以上方程解得。问题10:会用Q=fS相简解物理问题两个物体相互摩擦而产生的热量Q(或说系统内能的增加量)等于物体之间滑动摩擦力f与这两个物体间相对滑动的路程的乘积,即Q=fS相.利用这结论可以简便地解答高考试题中的“摩擦生热”问题。下面就举例说明这一点。ABC图14例16、如图1ABC图14分析与解:设A、B、C的质量均为m。B、C碰撞前,A与B的共同速度为V0,碰撞后B与C的共同速度为V1。对B、C构成的系统,由动量守恒定律得:mV0=2mV1设A滑至C的右端时,三者的共同速度为V2。对A、B、C构成的系统,由动量守恒定律得:2mV0=3mV2设C的长度为L,A与C的动摩擦因数为μ,则据摩擦生热公式和能量守恒定律可得:ABCDDABCDDORE图15h由以上各式解得.例17、如图15所示,AB与CD为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度V0=4m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=10m/s2).分析与解:由于滑块在斜面上受到摩擦阻力作用,所以物体的机械能将逐渐减少,最后物体在BEC圆弧上作永不停息的往复运动。由于物体只在在BEC圆弧上作永不停息的往复运动之前的运动过程中,重力所做的功为WG=mg(h-R/2),摩擦力所做的功为Wf=-μmgscos600,由动能定理得:mg(h-R/2)-μmgscos600=0-∴s=280m.问题11:会解机械能守恒定律与圆周运动的综合问题。当系统内的物体都在做圆周运动,若机械能守恒,则可利用机械能守恒定律列一个方程,但未知数有多个,因此必须利用圆周运动的知识补充方程,才能解答相关问题。图16AB例18、如图16所示,半径为r,质量不计的圆盘与地面垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定一个质量为m的小球A,在O点的正下方离O点r/2图16AB(1)A球转到最低点时的线速度是多少?(2)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?分析与解:该系统在自由转动过程中,只有重力做 功,机械能守恒。设A球转到最低点时的线速度为VA,Bθ图17球的速度为Vθ图17mgr-mgr/2=mvA2/2+mVB2/2据圆周运动的知识可知:VA=2VB由上述二式可求得VA=设在转动过程中半径OA向左偏离竖直方向的最大角度是θ(如图17所示),则据机械能守恒定律可得:mgr.cosθ-mgr(1+sinθ)/2=0 易求得θ=sin-1。问题12:会解机械能守恒定律与动量守恒定律的综合问题。若系统的机械能和动量均守恒,则可利用动量守恒定律和机械能守恒定律求解相关问题。例19、如图18所示,长为L的轻绳,一端用轻环套在光滑的横杆上(轻绳和轻杆的质量都不计),另一端连接一质量为m的小球,开始时,将系球的绳子绷紧并转到与横杆平行的位置,然后轻轻放手,当绳子与横杆成θ时,小球速度在水平方向的分量大小是多少?竖直方向的分量大小是多少?图18θ分析与解:对于轻环、小球构成的系统,在水平方向上不受外力作用,所以在水平方向动量守恒。又由于轻环的质量不计,在水平方向的动量恒为零,所以小球的动量在水平方向的分量恒为零,小球速度在水平方向的分量为零。又因为轻环、小球构成的系统的机械能守恒,所以mgLsinθ=mVy图18θ即Vy=.此为速度竖直方向的分量。Sba图19例20、如图19,长木板ab的b端固定一档板,木板连同档板的质量为M=4.0kg,a、b间的距离S=2.0m。木板位于光滑水平面上。在木板a端有一小物块,其质量m=1.0kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态。现令小物块以初速V0=4m/sSba图19 分析与解:设木块和物块最后共同的速度为V,由动量守恒定律: 设全过程损失的机械能为E,则有: 在全过程中因摩擦而生热Q=2μmgS,则据能量守恒可得在碰撞过程中损失的机械能为:E1=E-Q=2.4J.问题13:会解机械能守恒定律与绳连问题的综合问题。图20图20ABLCVB图21VVB图21VCBCAθ分析与解:此题的关键是要找到任一位置时,A、B球的速度和C球的速度之间的关系。在如图21所示位置,BC绳与竖直方向成角。因为BC绳不能伸长且始终绷紧,所以B、C两球的速度VB和VC在绳方向上的投影应相等,即VC.COS=VB.Sin由机械能守恒定律,可得: mg(h-L/2)=mvC2/2+2(mvB2/2)又因为tg2=(L2-h2)/h2由以上各式可得:VB=. 问题14:会解机械能守恒定律与面接触问题的综合问题。若系统内的物体相互接触,且各接触面光滑,则系统的机械能守恒,但只有求出面接触物体间的速度关联式才能解答相应问题。例22、如图22所示,将楔木块放在光滑水平面上靠墙边处并用手固定,然后在木块和墙面之间放入一个小球,球的下缘离地面高度为H,木块的倾角为,球和木块质量相等,一切接触面均光滑,放手让小球和木块同时由静止开始运动,求球着地时球和木块的速度。V1V2图22分析与解:此题的关键是要找到球着地时小球和木块的速度的关系。因为小球和木块总是相互接触的,所以小球的速度V1和木块 的速度V2在垂直于接触面的方向上的投影相等,即:V1Cos=VV1V2图22由机械能守恒定律可得:mgH=mv12/2+mv22/2由上述二式可求得:V1=.sin,V2=.cos.问题15:会解用功能关系分析解答相关问题。ABCD图23例23、如图23所示,一根轻弹簧下端固定,竖立在水平面上。其正上方A位置有一只小球。小球从静止开始下落,在BABCD图23例24、物体以150J的初动能从某斜面的底端沿斜面向上作匀减速运动,当它到达某点P时,其动能减少了100J时,机械能减少了30J,物体继续上升到最高位置后又返回到原出发点,其动能等于。分析与解:虽然我们对斜面的情况一无所知,但是物体从斜面一底点P与从点P到最高点,这两阶段的动能减少量和机械能损失量是成比例的,设物体从点P到最高点过程中,损失的机械能为E,则100/30=(150-100)/E,由此得E=15J,所以物体从斜底到达斜面顶一共损失机械能45J,那么它从斜面顶回到出发点机械能也损失这么多,于是在全过程中损失的机械能90J,回到出发点时的动能为60J.BLLACD图24例25、一传送带装置示意图如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BCBLLACD图24分析与解:以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有①②在这段时间内,传送带运动的路程为③由以上可得④用f表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为⑤传送带克服小箱对它的摩擦力做功⑥两者之差就是克服摩擦力做功发出的热量⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。T时间内,电动机输出的功为:⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即⑨已知相邻两小箱的距离为L,所以⑩联立⑦⑧⑨⑩,得⑾三、警示易错试题典型错误之一:错误认为“人做功的计算”与“某个具体力做功的计算”相同。人做的功就是人体消耗化学能的量度,不少学生错误认为只是人对其它物体作用力所做的功。例26、质量为m1、m2的两物体,静止在光滑的水平面上,质量为m的人站在m1上用恒力F拉绳子,经过一段时间后,两物体的速度大小分别为V1和V2,位移分别为S1和S2,如图25所示。则这段时间内此人所做的功的大小等于:m1图25m2mA.FS2m1图25m2mC.D.错解:人所做的功等于拉力F对物体m2所做的功W=F·S2,由动能定理可得:即AC正确。分析纠错:根据能量守恒可知,人通过做功消耗的化学能将全部转化为物体m1和m2的动能以及人的动能。所以人做的功的大小等于即B、D两选项正确。典型错误之二:混淆注意“相对位移”与“绝对位移”。图26P图26PQ例27、小物块位于光滑的斜面上,斜面位于光滑的水平地面上(如图26所示),从地面上看,在小物块沿斜面下滑的过程中,斜面对小物块的作用力。(A)垂直于接触面,做功为零;图27图27PQFF’(C)不垂直于接触面,做功不为零;(D)不垂于接触面,做功不为零。错解:斜面对小物块的作用力垂直于接触面,作用力与物体的位移垂直,故做功为零。即A选项正确。分析纠错:小物块A在下滑过程中和斜面之间有一对相互作用力F和F',如图27所示。如果把斜面B固定在水平桌面上,物体A的位移方向和弹力方向垂直,这时斜面对物块A不做功。但此题告诉的条件是斜劈放在光滑的水平面上,可以自由滑动。此时弹力方向仍然垂直于斜面,但是物块A的位移方向却是从初位置指向终末位置。如图27所示,弹力和位移方向不再垂直而是成一钝角,所以弹力对小物块A做负功,即B选项正确。OAB图28VAVB典型错误之三:混淆“OAB图28VAVB绳的弹力是一定沿绳的方向的,而杆的弹力不一定沿杆的方向。所以当物体的速度与杆垂直时,杆的弹力可以对物体做功。例28、如图28所示,在长为L的轻杆中点A和端点B各固定一质量均为m的小球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速释放摆下。求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?错解:由于杆的弹力总垂直于小球的运动方向,所以轻杆对A、B两球均不做功。分析纠错:设当杆转到竖直位置时,A球和B球的速度分别为VA和VB。如果把轻杆、地球、两个小球构成的系统作为研究对象,那么由于杆和小球的相互作用力做功总和等于零,故系统机械能守恒。若取B的最低点为零重力势能参考平面,可得:2mgL=又因A球对B球在各个时刻对应的角速度相同,故VB=2VA由以上二式得:.根据动能定理,可解出杆对A、B做的功。对于A有WA+mgL/2=-O,所以WA=-mgL.对于B有WB+mgL=,所以WB=0.2mgL.典型错误之四:混淆作用力做功与反作用力做功的不同。作用力和反作用是两个分别作用在不同物体上的力,因此作用力的功和反作用力的功没有直接关系。作用力可以对物体做正功、负功或不做功,反作用力也同样可以对物体做正功、负功或不做功。例29、下列是一些说法:①一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同;②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反;③在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反;④在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号也不一定相反;以上说法正确的是A.①②B.①③②C.②③D.②④错解:认为“在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反”而错选B。分析纠错:说法eq\o\ac(○,1)不正确,因为处于平衡状态时,两个力大小相等方向相反,在同一段时间内冲量大小相等,但方向相反。由恒力做功的知识可知,说法eq\o\ac(○,2)正确。关于作用力和反作用力的功要认识到它们是作用在两个物体上,两个物体的位移可能不同,所以功可能不同,说法eq\o\ac(○,3)不正确,说法eq\o\ac(○,4)正确。正确选项是D。V0V0O1ROθ图29例30、一质量为m的质点,系于长为R的轻绳的一端,绳的另一端固定在空间的O点,假定绳是不可伸长的、柔软且无弹性的。今把质点从O点的正上方离O点的距离为的O1点以水平的速度抛出,如图29所示。试求;(1)轻绳即将伸直时,绳与竖直方向的夹角为多少?(2)当质点到达O点的正下方时,绳对质点的拉力为多大?错解:很多同学在求解这道题时,对全过程进行整体思维,设质点到达O点的正下方时速度为V,根据能量守恒定律可得:根据向心力公式得:,解得:.分析纠错:OVOV0VV⊥V/图30,其中联立解得。第二过程:绳绷直过程。绳棚直时,绳刚好水平,如图30所示.由于绳不可伸长,故绳绷直时,V0损失,质点仅有速度V⊥,且。第三过程:小球在竖直平面内做圆周运动。设质点到达O点正下方时,速度为V′,根据机械能守恒守律有:设此时绳对质点的拉力为T,则,联立解得:。四、如临高考测试1.下列说法哪些是正确的?A.作用在物体上的力不做功,说明物体的位移为零;B.作用力和反作用力的功必然相等,且一正一负;C.相互摩擦的物体系统中摩擦力的功的代数和不一定为零;D.某一个力的功为零,其冲量不一定为零。2.用力拉质量为M的物体,沿水平面匀速前进S,已知力与水平面的夹角为,方向斜向上,物体与地面间的滑动摩擦系数为,则此力做功为:A.MgSB.MgS/CosC.MgS/(Cos+Sin)D.MgSCos/(Cos+Sin)。图313.静止在光滑水平面上的物体,受到一个水平拉力的作用,该力随时间变化的关系如图31所示,则下列结论正确的是:图31A.拉力在2s内的功不为零;B.物体在2s内的位移不零;C.拉力在2s内的冲量不为零;D.物体在2s末的速度为零。4.飞机在飞行时受到的空气阻力与速率的平方成正比。若飞机以速率V匀速飞行时,发动机的功率为P,则当飞机以速率nV匀速飞行时,发动机的功率为:A.npB.2npC.n2pD.n3p。图325.如图32所示,木块M上表面是水平的,当木块m置于M上,并与M一起沿光滑斜面由静止开始下滑,在下滑过程中图32A.重力对木块m做正功B.木块M对木块m的支持力做负功C.木块M对木块m的摩擦力做负功D.木块m所受合外力对m做正功。6.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端。已知小物块的初动能为E,它返回斜面底端的速度大小为V,克服摩擦阻力做功为E/2。若小物块冲上斜面的初动能变为2E,则有A.返回斜面底端时的动能为E;B.返回斜面底端时的动能为3E/2C.返回斜面底端时的速度大小为2V;D.返回斜面底端时的速度大小为。7.对放在水平面上的质量为M的物体,施与水平拉力F,使它从静止开始运动时间t后撤去外力F,又经时间t停下来,则:A.撤去力F的时刻,物体的动量最大;图33B.物体受到的阻力大小等于F;图33C.物体克服阻力做的功为F2t2/4MD.F对物体做功的平均功率为F2t/4M。8.质量为m的物体,在沿斜面方向的恒力F作用下,沿粗糙的斜面匀速地由A点运动到B点,物体上升的高度为h,如图33所示。则在运动过程中A.物体所受各力的合力做功为零;B.物体所受各力的合力做功为mghC.恒力F与摩擦力的合力做功为零;D.恒力F做功为mg。9.如图34,木块AB用轻弹簧连接,放在光滑的水平面上,A紧靠墙壁,在木块B上施加向左的水平力F,使弹簧压缩,当撤去外力后;图34A.A尚未离开墙壁前,弹簧和B的机械能守恒;图34B.A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论