欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

复习第3章函数

用它可...第三章函数第11讲反比例函数考点梳理过关考点1反比例函数的有关概念6年1考考点2反比例函数的图象与性质6年5考1反比例函数yk0k为常数的图象是双曲线且关于原点对称2反比例函数yk0k为常数的图象和第3课时反比例函数1.如图。反比例函数y=(x<0)的图象经过点P。

复习第3章函数Tag内容描述:<p>1、数值分析,李小林重庆师范大学数学学院,NumericalAnalysis,3.1基本概念,第3章函数逼近,函数逼近:用比较简单的函数代替复杂的函数,误差度量标准:,(1),(1),(2),可见,对同一个被逼近函数,不同距离意义下的逼近,逼近函数是不同的.,设给定函数,则对,存在一多项式,使得对所有一致成立。,Bernstein多项式:,Weierstrass定理,3.2最佳一致逼近/*Bes。</p><p>2、,第3章稳定性理论基础,3.1稳定性理论发展概况3.2非线性系统与平衡点3.3Lyapunov稳定的概念3.4线性化与局部稳定性3.5Lyapunov直接方法3.6基于Lyapunov直接方法的系统分析3.7基于Lyapunov直接方法的控制器设计,.,31稳定性理论发展概况,英国G.B.Airy(1801-1892)系统地研究了天文望远镜的速度控制问题,从倒立摆问题中发现了系统的不稳定性,首次。</p><p>3、第三章 函数 第11讲 反比例函数,考点梳理过关,考点1 反比例函数的有关概念 6年1考,考点2 反比例函数的图象与性质 6年5考,1反比例函数y (k0,k为常数)的图象是__双曲线__,且关于__原点__对称 2反比例函数y (k0,k为常数)的图象和性质,拓展:判断函数的增减性,首先确定函数图象所在的象限,函数图象位置是由k值决定的,3. 反比例函数k的几何意义 如图,点P(x,y)是双曲线上任意一点,过点P作PAx轴于点A,作PBy轴于点B,则PA |y| ,PB |x| ,S矩形PAOBPAPB|x|y| |xy| .y ,xyk.S矩形PAOB|k|.即过双曲线上任意一点分别作坐标轴的垂线段,两条。</p><p>4、第三章函数第9讲函数及其图象 考点梳理过关 考点1平面直角坐标系中点的坐标特征 考点2点的坐标特征 注意 若解析式由多个条件限制 必须首先求出式子中各部分自变量的取值范围 然后再取其公共部分 此类问题要特别注意。</p><p>5、第三章函数第10讲一次函数 考点梳理过关 考点1一次函数的概念6年1考 注意 一次函数不一定是正比例函数 但正比例函数一定是一次函数 一般地 形如y kx b k b是常数 k 0 的函数 叫做x的一次函数 特别地 当b 0时 一次函。</p><p>6、教学资料参考范本 中考数学专题复习第3章函数第10讲反比例函数 撰写人:__________________ 时 间:__________________ 归纳(一)反比例函数的概念 1. 可以写成的形式, 用它可以迅速地求。</p><p>7、第三章函数第11讲反比例函数 考点梳理过关 考点1反比例函数的有关概念6年1考 考点2反比例函数的图象与性质6年5考 1 反比例函数y k 0 k为常数 的图象是 双曲线 且关于 原点 对称 2 反比例函数y k 0 k为常数 的图象和。</p><p>8、第3课时反比例函数1如图,反比例函数y(x0)的图象经过点P,则k的值为(A)A6 B5 C6 D52已知点P(a,m),Q(b,n)都在反比例函数y的图象上,且a0Cmn3已知反比例函数y,下列结论不正确的是(D)A其图象经过点(3,1)B其图象分别位于第一、三象限C当x0时,y随x的增大而减小D若x1时,y34一次函数yaxb和反比例函数y在同一直角坐标系中的大致图象是(A)A BC D5已知y是x的反比例函数,当x0时,y随x的增大而减小请写出一个满足以上条件的函数表达式__答案不唯一只要使反比例系数大于0即可如y__.6如图,已知反比例函数y(k为常数,k0)的图象经过点A,过A点作AB。</p><p>9、一般地,如果两个变量x,y之间的对应关系可以表示成______(k为常数,k0)的形式,那么称y是x的反比例函数.其中x是自变量,y是因变量.x的取值范围是_________全体实数.反比例函数表达式的三种形式:y=kx-1,xy=k。</p><p>10、3.3反比例函数,计算反比例函数上的SAOB的面积(如图).【解析】过点A(-x1,y1)和点B(x2,-y2)分别作x轴和y轴的垂线,交点分别是D、H和C,如图所示.,解:联立方程组,得点A的坐标为(1,3);解方程-x+4=0。</p><p>11、3 3反比例函数 计算反比例函数上的S AOB的面积 如图 解析 过点A x1 y1 和点B x2 y2 分别作x轴和y轴的垂线 交点分别是D H和C 如图所示 解 联立方程组 得 点A的坐标为 1 3 解方程 x 4 0 解得x 4 点B的坐标为 4 0。</p><p>12、第3章C+函数,3.1函数基础3.2函数调用的方式3.3内联函数3.4带默认形参值的函数3.5函数重载3.6函数模板,3.1函数基础,如果函数A调用了函数B,则约定把A称为主调函数,B称为被调函数。,函数定义,类型函数名(形参列表)变量声明语句执行语句如果要向主调函数返回值,则用return语句。return(表达式);,函数原型,类型函数名(形参列表);1.如果被调函数在主调函数之前定义。</p><p>13、第三章过程抽象函数,学习目标,掌握函数调用的方法,会使用函数原型;掌握函数定义的方法,理解函数返回值的意义;熟练掌握函数调用的值传递规则。掌握递归函数,3.1函数3.1.1函数概述3.1.2函数定义3.1.3函数调用3.1.4函数传递机制3.2递归函数3.3程序的结构化与模块化3.4程序测试与代码优化,第三章过程抽象函数,C函数的概念,函数是C提供的用于实现子模块的语言成分。函数的概念源。</p><p>14、,第三章,第三章,方程与函数,.,一、方程的概念,3.1方程与方程组的概念及分类,定义1等式,称为方程。,其中f与g都是自变数的函数。,称为这个,方程的定义域。,称为方程的未知数。,有n个自,变数的方程称为n元方程。,若,能使,则称,为方程f=g的一个解,解的全体所组,成的集合S称为这个方程的解集。,定义2,显然,.,当,称f=g为恒等方程,记为,当,称f=g为矛盾方程。,定义3。</p><p>15、第3章语句和函数,本章要点,掌握C+的基本语句明确选择结构和循环结构的条件构成掌握函数的定义和调用理解和掌握函数的参数传递、函数的重载和函数的默认参数较熟练地使用C+的语句和函数进行程序设计,3.1赋值语句,3.1.1简单赋值语句=;3.1.2复合赋值语句=;等价于=;,3.2选择语句,3.2.1if语句,1if语句语法形式:,如果“条件”为“真”,则执行“语句”,if(),其执行。</p><p>16、第3章稳定性理论基础,3.1稳定性理论发展概况3.2非线性系统与平衡点3.3Lyapunov稳定的概念3.4线性化与局部稳定性3.5Lyapunov直接方法3.6基于Lyapunov直接方法的系统分析3.7基于Lyapunov直接方法的控制器设计,31稳定性理论发展概况,英国G.B.Airy(1801-1892)系统地研究了天文望远镜的速度控制问题,从倒立摆问题中发现了系统的不稳定性,首次提出反馈。</p><p>17、3 4二次函数 二次函数 一元二次方程 一元二次不等式之间的关系 在二次函数y ax2 bx c a b c为常数 且a 0 中 1 令y 0时 二次函数y ax2 bx c变为关于x的一元二次方程ax2 bx c 0 此时 二次函数图象与x轴有无交点即转变。</p><p>18、,第三章效用函数,.,引言决策的特点之一是后果的价值待定。为了用定量的方法研究决策问题,除了要用主观概率量化自然状态的不确定性以外,还需要量化后果的价值。在量化后果的价值时,会遇到两个主要问题:(1)后果本身是用语言表达的,可能没有任何合适的直接测量标度。(2)即使有一个明确的标度(通常是钱)可以测量后果,按这个标度测得的量也可能并不反映后果对决策人的真正价值。,.,抽奖的期望值有1250元。</p>
【复习第3章函数】相关PPT文档
第3章lyapunov函数
中考数学复习第3章函数第11讲反比例函数课件
中考数学复习 第3章 函数 第9讲 函数及其图象课件1
中考数学复习第3章函数第10讲一次函数课件
中考数学复习 第3章 函数 第11讲 反比例函数课件1
中考数学 第3章 第3节 反比例函数复习课件.ppt
中考数学第3章函数3.3反比例函数复习课件.ppt
中考数学 第3章 函数 3.3 反比例函数复习课件.ppt
第3章 C++函数

      第3章 C++函数

    上传时间: 2020-05-22     大小: 145.50KB     页数: 25

第3章 过程抽象——函数
第3章方程与函数
第3章语句和函数
第3章lyapunov函数.ppt
中考数学 第3章 函数 3.4 二次函数复习课件.ppt
第3章_效用函数
【复习第3章函数】相关DOC文档
中考数学专题复习第3章函数第11讲二次函数.doc
中考数学专题复习第3章函数第10讲反比例函数.doc
安徽省中考数学复习第3章函数第3节反比例函数习题.docx
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!