欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

几个常见函数的导数

4.函数 y=f(x)在。上面的方法中把x换成x0即为求函数在点x0处的导数.。3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值。函数f(x)在x=x0处求导数反映了函数在点(x0。上面的方法中把x换x0即为求函数在点x0处的 导数.。上面的方法中把x换x0即为求函数。

几个常见函数的导数Tag内容描述:<p>1、1.2.1 几个常用函数的导数,不能依交点是一个来定切线,一、复习:,(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,3.求切线方程有几个步骤?,无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。,二、新课:几个常用函数的导数:,见书P13,答:(1)2、3、4,(2)y=4x最快,y=2x最慢,(3)与k有关,见书P14,分子有理化,例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点, (1)求过点P的曲线y=x2的切线方程。 (2)求过点Q的曲。</p><p>2、1.2.1 几个常见函数的导数,在不致发生混淆时,导函数也简称导数,导函数,由函数f(x)在x=x0处求导数的过程可以看到,当时,f(x0) 是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数. 即:,1.导函数的定义,2.如何求函数y=f(x)的导数,(3)函数f(x)在点x0处的导数 就是导函数 在x=x0处的函数值,即 。这也是 求函数在点x0处的导数的方法之一。,(2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 。,(1)函数在一点处的导数,就是在该点的函数的改 变量与自变量的改变量之比的极限,它是一个 常数,不是。</p><p>3、1.2.1 几个常用函数的导数,一、复习,1.导数的几何意义:曲线在某点处的切线的斜率; 物理意义:物体在某一时刻的瞬时速度。,2.求函数y=f(x)的导数的基本步骤:,给定函数y=f(x),令当x无限趋近于0,3.函数f(x)在点x0处的导数 就是导函数 在x=x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0 ,f(x0)处的切线的斜率.,5.求切线方程的步骤:,(1)求出函数在点x0处的变化率 ,得到曲线在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,1.求函数y=。</p><p>4、3.2.1几个常用函数的导数,一、复习,3.求函数的导数的方法是:,说明:上面的方法中把x换成x0即为求函数在点x0处的 导数.,1.导数的定义: 2.导数的几何意义:,说明:上面的方法中把x换成x0即为求函数在点x0处的导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0)处的切线的斜率.,5.求切线方程的步骤:,(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切。</p><p>5、3.2.1几个常用函数的导数,高二数学 选修1-1 第三章 导数及其应用,求函数的导数的方法是:,函数f(x)在x=x0处求导数反映了函数在点(x0,y0 )附近的变化规律;,1) |F(x)|越大,则f(x)在(x0 ,y0 )附近就越“陡”,2) |F(x)|越小,则f(x)在(x0 ,y0 )附近就越“平缓”,在不致发生混淆时,导函数也简称导数,函数导函数,由函数f(x)在x=x0处求导数的过程可以看到,当时,f(x0) 是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:,f(x)在x=x0处的导数,f(x)的导函数,x=x0时的函数值,关系,二、几种常见函数的导数,根据导数的定义可以。</p><p>6、3.2.1几个常用函数的导数,高二数学 选修1-1 第三章 导数及其应用,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换成x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换成x0即为求函数在点x0处的导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处。</p><p>7、1.2.1几个常用函数的导数,高二数学 选修2-2 第一章 导数及其应用,2019/5/24,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换成x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换成x0即为求函数在点x0处的导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函。</p><p>8、几个常用函数的导数,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导。</p><p>9、几种常见函数的 导 数,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0)处的切。</p><p>10、1.2.1 几个常用函数的导数,不能依交点是一个来定切线,一、复习:,(1)求出函数在点x0处的变化率 ,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,3.求切线方程有几个步骤?,无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。,二、新课:几个常用函数的导数:,见书P13,答:(1)2、3、4,(2)y=4x最快,y=2x最慢,(3)与k有关,见书P14,分子有理化,例 1:求曲线 y=x3+3x2-5 过点 M(1, -1) 的切线方程.,解: 由 y=x3+3x2-5 知 y=3x2+6x,设切点为 P(x。</p><p>11、3.2.1几个常用函数的导数,高二数学 选修1-1 第三章 导数及其应用,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换成x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换成x0即为求函数在点x0处的导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处。</p><p>12、3.2.1几个常用函数的导数,高二数学 选修1-1 第三章 导数及其应用,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换成x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换成x0即为求函数在点x0处的导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处。</p><p>13、几个常用函数的导数,一、复习,1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式导数,导数源于实践,又服务于实践.,2.求函数的导数的方法是:,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,说明:上面的方法中把x换x0即为求函数在点x0处的 导数.,3.函数f(x)在点x0处的导数 就是导函数 在x= x0处的函数值,即 .这也是求函数在点x0 处的导数的方法之一。,4.函数 y=f(x)在点x0处的导。</p><p>14、1.2.1 几个常用函数的导数,练习1、求函数y=f(x)=c的导数。,因为,所以,因为,所以,练习2、求函数y=f(x)=x的导数,探究?,(1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数y=kx(k0)增(减)的快慢与什么有关?,在同一平面直角坐标系中, 画出y=2x,y=3x,y=4x的 图象,并根据导数定义, 求它们的导数。,因为,所以,练习3、求函数y=f(x)=x2的导数,你能不能求出函数y=f(x)=x3的导数。,思考,y =3x2,你猜测 y = x n 导数是什么?,y =nxn-1,因为,所以,探究?,画出函数 的图象。根据图象,。</p><p>15、常见函数的导函数,问题:,1、导数的定义:,几种常见函数的导函数:,(C为常数),1、,2、,3、,4、,5、,6、,7、,8、,函数和、差、积、商的导数,1、和(或差)的导数,例:设f(x)=u(x)+v(x),求,即:,两个函数的和(或差)的导数,等于这 两个函数的导数的和(或差),2、积的导数,例:设f(x)=u(x)v(x),求,两个函数的积的导数,等于第一个函数 的导数的乘第二个函数,加上第一个函数 乘第二个函数的导数,即:,思考:,(4)商的导数,例:设,求,,,即:,两个函数的商的导数,等于分子的,导数与分母的积减去分子与分母的导数 的积,再除以分母的。</p>
【几个常见函数的导数】相关PPT文档
几个常用函数的导数.ppt
几个常用函数的导数(1).ppt
几个常用函数的导数(10).ppt
几个常用函数的导数(11).ppt
几个常用函数的导数(3).ppt
几个常用函数的导数(9).ppt
几个常见函数的导数(3).ppt
几个常用函数的导数(5).ppt
几种常见函数的导数(3).ppt
几个常用函数的导数(13).ppt
几个常用函数的导数(12).ppt
几个常用函数的导数(16).ppt
几个常用函数的导数(2).ppt
几个常用函数的导数(14).ppt
几个常用函数的导数(7).ppt
几个常见函数的导数.ppt
《几个常见函数的导数》三步法求导(人教A版).pptx
《几个常见函数的导数》导函数流程图(人教A版).pptx
苏教版选修22 几个常见函数的导数 课件(29张).ppt
3.2.1几个常用函数的导数 (2).ppt
【素材】《几个常见函数的导数》导数与导函数(人教A版).pptx
【素材】《几个常见函数的导数》三步法求导(人教A版).pptx
《几个常见函数的导数》割线的斜率(人教A版).pptx
【几个常见函数的导数】相关DOC文档
苏教版选修22 几个常见函数的导数 课时作业.doc
1.2.1几个常见函数的导数.doc
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!