复合钻井模式下PDC钻头钻进仿真研究_第1页
复合钻井模式下PDC钻头钻进仿真研究_第2页
复合钻井模式下PDC钻头钻进仿真研究_第3页
复合钻井模式下PDC钻头钻进仿真研究_第4页
复合钻井模式下PDC钻头钻进仿真研究_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

钻井技术与装备复合钻井模式下钻头钻进仿真研究郑家伟况雨春王霞邹子由陈玉中杨迎新(宝石机械成都装备制造分公司西南石油大学机电工程学院)摘要钻头在井底的受力将影响到钻头钻进效率及切削齿的磨损,尤其是在复合钻井模式下,切削齿与岩石互作用更加复杂。鉴于此,提出一种新的基于三维建模理论的复合钻井模式下钻头钻进仿真方法,目的在于通过仿真结果对复合钻井用钻头的切削参数进行评价。该仿真方法首先是建立复合钻井模式下钻头预钻井底模型,钻头按照设定钻进模式运动,将切削齿作为刀具对岩石进行虚拟切削,仿真过程中建立各切削齿的切削带模型,通过切削带计算各切削齿的接触弧长、接触面积和切削体积。理想工况与复合钻井模式下仿真结果对比表明,新的复合钻井模式下钻头钻进仿真方法能够满足复合钻井模式下对切削参数的定量化评价需求,具有较好的仿真精度以及可视化效果。关键词钻头;破岩仿真;二次开发;切削参数;复合钻井中图分类号文献标识码(,;,),;引言复合钻井是转盘与井下动力钻具同时驱动钻头工作的一种钻井方式。“螺杆钻具”的复合钻井模式已经成为目前较为有效的提速手段。在这种工作状态下,既有螺杆钻具转子自身的旋转,同时又有转盘旋转钻柱,带动螺杆整体旋转,此时钻头形成复合运动模式。复合钻井模式下钻头与岩石的互作用过程实际运动形式是一种交叉刮切破岩方式,钻头的切削体积、切削面积和切削力等切削参数的计算相对于理想运动模式下石油机械年第卷第期基金项目中石油装备制造分公司重点项目“地层岩性综合评价及钻头数字化钻进系统研究”(新)。更为复杂。笔者以直螺杆为例,将复合钻井模式下钻头的运动简化为螺杆驱动的钻头自转与转盘驱动的偏心公转运动的复合运动形式,所建立的钻头钻进仿真方法的思路是首先建立虚拟钻头模型和虚拟岩石模型;钻头按复合钻井模式下的运动学模型运动形成切削轨迹;钻头的虚拟钻进行为通过岩石模型与切削轨迹模型的布尔运算实现,进而仿真得到相关切削参数。笔者主要对复合运动模式下钻头切削齿的切削体积和接触面积个参数进行了分析。与基于数值模型的钻头虚拟钻进仿真方法不同,笔者利用三维软件相关功能进行二次开发,实现了钻头钻进过程的仿真,具有仿真效率高,可视化效果好的特点。基本原理是目前机械三维设计及加工常用的软件,利用相关功能在机械零件仿真加工中的应用较为常见。该原理也可应用在钻头的钻进仿真中,在中运用钻头切削齿模型做虚拟钻进运动,假设切削齿为纯塑性切削,在钻进周期内,切削轨迹模型与井底模型做布尔减运算,同时可以进行接触面积、切削体积和切削力的计算,最终钻头虚拟钻进一段时间后得到仿真后的连续破碎带和井底模型。针对复杂钻井模式下,钻头旋转轴与井底中心轴不同轴的问题,导致破碎带有可能是断续的,个复杂体做布尔运算时容易出错,因此笔者建立切削轨迹模型代替虚拟钻头与岩石模型相互作用,复合钻井模式下的钻进仿真具体步骤如下。()建立钻头模型(可简化为切削齿三维空间分布的几何模型),按复合钻井运动规律生成钻头牙齿切削轨迹模型;()初始阶段,圈切削轨迹回转体与井底三维实体模型进行布尔减运算生成预钻井底模型;()切削齿在预钻井底模型基础上按一定时间步长进行旋转钻进,继续生成切削轨迹模型,该切削轨迹模型与预钻井底模型进行布尔减运算生成破碎带模型;()根据破碎带模型及接触状态计算切削体积、接触面积和切削力等参数;()仿真完个切削周期后统计各切削参数并完成仿真任务。齿切削轨迹模型是指钻头钻进过程中切削齿齿面经过的空间体。该轨迹模型可以看作各时刻切削齿齿面的集合利用微元法在切削路径上扫掠建立的几何模型,定义钻头个切削轨迹周期为钻头钻进自转周,每一个切削轨迹周期进行分段处理,而每一段切削轨迹可按仿真精度要求分成微元,该微元即为仿真钻进的最小步长。设定表示所建立切削轨迹周期数,表示单周期内切削轨迹分段数,表示每段切削轨迹内微元个数,把虚拟仿真过程按周期、分段和微元个级别分类的主要目的是便于切削过程中中间数据的存储。切削轨迹模型将个切削周期分为份,每钻进()时间,各切削齿旋转钻进至仿真位置并建立个齿面圆弧。每个圆弧相对前一圆弧的位移量和旋转钻进增量如下。自转增量(绕轴),位移量(沿轴),公转增量(绕轴),钻进增量(沿轴)。式中,为钻头公转角速度,;为钻头仿真钻速,为防止各切削齿切削轨迹间相互干涉,将分为段进行切削。表达式为()()式中,为钻头刀翼方位夹角最小值,;为钻头自转角速度,。切削体模型将复合运动工况钻头运动简化为转盘通过钻杆驱动钻头绕井眼轴线的公转运动和螺杆传递给钻头的自转运动的复合。自转运动方向为正,公转运动方向与实际井底情况有关。当公转运动为负时,个切削周期内各切削齿的切削轨迹不能把井底覆盖完全。为保证建立井底的完整性,各切削齿轨迹要大于等于个圆周。因此建立切削齿轨迹的周期数为()()为保证建立的井壁更接近实际井壁,需要再钻进个周期。在中只需复制个钻头切削体模型,如图所示。复制体间旋转钻进增量如下。旋转增量(),钻进增量。的表达式为年第卷第期郑家伟等复合钻井模式下钻头钻进仿真研究()式中,为保径齿最大竖直间距,。井底模型将钻头切削体模型与岩石模型进行布尔求差,得到钻头复合钻进过程中预钻井底和井壁模型,如图所示。图满足仿真需求的钻头切削体模型图钻头预钻井底及和井壁模型钻头复合钻进仿真方法与理想工况下钻头切削量参数的分析不同,复合运动工况下,切削齿的接触面积和接触弧长在钻进过程中是变化的。因此,采用步进式虚拟轨迹切削法对井底模型进行个周期的仿真切削,并实时计算其切削参数。仿真流程如下设定钻头自转转速、公转转速、机械钻速、刀翼间最小方位夹角和仿真步长等参数;计算切削轨迹分段数,每段切削轨迹微元数;钻头各齿按仿真步长虚拟钻进,生成切削轨迹微元模型;切削轨迹微元模型与井底模型进行布尔减运算,得到仿真时刻瞬时切削弧长、接触面积、切削体积等参数,并进行存储,返回步骤;仿真结束后计算总体切削参数并进行分析。从单齿切削轨迹模型来看,由于复合运动切削模式造成其在各仿真时刻的接触面积、切削弧长和切削体积各不相同。图表示单齿切削轨迹模型与井底模型在各仿真时刻的布尔求差情况。图表示钻头所有主切削齿各仿真时刻与井底模型布尔运算时的分布情况。个图中的红色曲线为牙齿与井底岩石的接触曲线。图单个切削齿虚拟切削仿真结果图钻头各切削齿接触曲线复合钻进切削参数的分析计算过程就是对切削带模型进行后处理的过程。首先,运用测量功能,测量布尔求交体的体积并求和,即为该切削齿的切削体积。通过对各仿真时刻切削参数存储数据分析,将个截面(即切削齿个时刻齿面)与岩屑模型创建相交线,可得到各切削时刻的切削齿齿面与井底岩石的接触面。识别出相交线中接触圆弧并测得长度,即为接触弧长。建立截面线围成的平面,即可计算接触面积。而测量功能是等软件的内部固有功能,不需要单独编程。复合钻进模式和理想钻进模式仿真切削参数对比对某型钻头分析的切削参数仿真结果中,钻头各钻进时刻切削齿接触面积变化如图所示。图中显示了各切削时刻(仿真步长为)接触面积的分布情况。该钻头理想运动工况各切削齿接触面积如图所示。各切削齿的接触面积都将随时间的变化而变化,切削齿接触面积的均值与该钻头理想工况下接石油机械年第卷第期图各仿真时刻切削齿接触面积的变化图图某型钻头理想工况各齿接触面积触面积的变化趋势相同,都是接触面积由钻头中心向保径逐渐减小。从接触面积的变化规律来看,由于理想工况下的接触面积始终不会发生改变,对于其工程意义而言是不存在交叉刮切破岩的情况,而复合钻井工况模拟时,从单齿接触面积看,按时间推进其接触面积随时发生变化,变化频率越频繁,其交叉刮切的现象越显著,而交叉刮切是复合钻井提速的一个显著因素。在相同钻速工况下,复合运动工况的切削体积和理想运动工况的切削体积对比如图所示。从图可以看出,以钻头鼻部为界,靠近钻头心部内锥的切削齿在种工况下切削体积变化不大,而在外锥及肩部的切削齿在种工况下切削体积有所不同,尤其是靠近规径齿位置的复合运动模式下牙齿切削量明显比理想运动工况下要大,这将影响复合运动工况下钻头的布齿设计优化方案,同时,这也显示出复合钻进工况下破岩仿真方法为钻头布齿参数优化提供了更有效的量化手段。按一定时间段进一步统计各切削齿切削量分布情况,理想运动工况如图所示,复合运动工况如图所示。图复合运动与理想运动工况切削体积对比由图可以看出,复合运动工况切削齿各切削时段切削体积存在较大差异,存在某时段切削齿切削体积等于的情况,这将影响到复合运动工况下破岩时钻头的受力、磨损及切削效率评价。目前的复合钻井模式下钻头钻进仿真方法也存在一定的局限性,由于该方法的假设条件是钻头按指定运动规律(钻速、自转及公转指定模式)钻进,其仿真切削数据具有一定的理想化因素影响,与实际钻井工况的切削参数相比存在更强的规律性变化关系,但对布齿参数的优化而言,该仿真方法的定量化指导适用。图理想运动工况各切削时段切削量分布年第卷第期郑家伟等复合钻井模式下钻头钻进仿真研究图复合运动工况各切削时段切削量分布结论()基于的几何建模和二次开发技术,提出了一种新的复合钻井模式下钻头钻进仿真方法。该方法通过切削齿轨迹模型与岩石模型布尔运算实现虚拟切削过程,通过对仿真中形成的切削带与对应切削齿任意时刻的位置关系,可以仿真切削齿任意时刻的接触弧长和接触面积等参数。结合实际钻进工况,为复合钻井钻头的优化设计提供了仿真分析数据。()理想运动工况和复合运动工况下钻头钻进仿真结果的对比表明,种工况各切削齿的切削体积相差不大,单从切削体积大小判断布齿参数的好坏并不科学,对比切削齿各切削时段的切削体积分布图能够表示出切削齿在复合运动工况下各时段与岩石接触工况,从而反映切削齿受冲击情况。()与现有仿真方法对比,新的复合钻井模式下钻头钻进仿真方法能够产生各切削齿的破碎带模型,仿真切削齿齿面与岩石在任意时刻的接触关系,并可进一步分析切削力。切削体积具有模型矢量化计算的优点,数值误差小,并可利用软件本身的三维显示功能而不用单独编程,具有可视化效果好的特点。()新的复合钻井模式下钻头钻进仿真方法目前仅能进行定钻速的仿真策略,对实际工况进行了简化,未考虑齿侧、刀翼与井底、井壁的相互作用,还需在下一步研究中进行完善。参考文献董明键,肖新磊,边培明复合钻井技术在元坝地区陆相地层中的应用石油钻探技术,()张东海,刘俊山复合钻井技术提高深井钻井速度断块油气田,()郭清,孙海芳中国石油钻井科技攻关三十年回顾与展望(二)钻采工艺,()许斌螺杆钻具输出性能分析与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论