英语原文.doc

平板定轮闸门设计(全套含CAD图纸)

收藏

资源目录
跳过导航链接。
平板定轮闸门设计(全套含CAD图纸).zip
闸门汇总数据.doc---(点击预览)
设计说明书.doc---(点击预览)
摘要目录.doc---(点击预览)
开题报告.doc---(点击预览)
实习报告.doc---(点击预览)
任务书.doc---(点击预览)
0 平板定轮闸门设计.doc---(点击预览)
外文翻译
插图
0 平板定轮闸门设计.doc---(点击预览)
1.dwg
1.gif
2.dwg
2.gif
3.dwg
3.gif
4-1.dwg
4-1.gif
4-10.dwg
4-10.gif
4-11.dwg
4-11.gif
4-12.dwg
4-12.gif
4-4.dwg
4-4.gif
4-5.dwg
4-5.gif
4-6.dwg
4-6.gif
4-7.dwg
4-7.gif
4-8.dwg
4-8.gif
4-9.dwg
4-9.gif
5-3.dwg
5-3.gif
5-4.dwg
5-4.gif
5-5.dwg
5-5.gif
5-6.dwg
5-6.gif
底节.dwg
底节.gif
次梁简图Drawing1.dwg
次梁简图Drawing1.gif
顶节.dwg
顶节.gif
中节反轨一-A3.dwg
中节反轨二-A2.dwg
主轨-A2.dwg
主轮-A3.dwg
侧轮-1.dwg
侧轮-A3 (2).dwg
侧轮装置-A3.dwg
偏心轴-A3.dwg
偏心轴1-A3.dwg
总装图-A0.dwg
支架-A3.dwg
支架.dwg
轴.dwg
轴承内圈压环.dwg
轴承外圈压环.dwg
轴承密封压环 (2).dwg
轴承密封压环.dwg
轴端挡板1.dwg
轴端挡板2.dwg
隔环一-1.dwg
隔环二-1.dwg
顶节.dwg
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10061562    类型:共享资源    大小:4.96MB    格式:ZIP    上传时间:2018-04-30 上传人:机****料 IP属地:河南
50
积分
关 键 词:
平板 闸门 设计 全套 cad 图纸
资源描述:


内容简介:
ABSTRACTPARTIIIOFTHISTHREEPARTSERIESOFPAPERSDESCRIBESTHESYNTHESISOFROLLERANDSLIDINGHYDRAULICSTEELGATESTRUCTURESPERFORMEDBYTHEMIXEDINTEGERNONLINEARPROGRAMMINGMINLPAPPROACHTHEMINLPAPPROACHENABLESTHEDETERMINATIONOFTHEOPTIMALNUMBEROFGATESTRUCTURALELEMENTSGIRDERS,PLATES,OPTIMALGATEGEOMETRY,OPTIMALINTERMEDIATEDISTANCESBETWEENSTRUCTURALELEMENTSANDALLCONTINUOUSANDSTANDARDCROSSECTIONALSIZESFORTHISPURPOSE,SPECIALLOGICALCONSTRAINTSFORTOPOLOGYALTERATIONSANDINTERCONNECTIONRELATIONSBETWEENTHEALTERNATIVEANDFIXEDSTRUCTURALELEMENTSAREFORMULATEDTHEYHAVEBEENEMBEDDEDINTOAMATHEMATICALOPTIMIZATIONMODELFORROLLERANDSLIDINGSTEELGATESTRUCTURESGATOPGATOPHASBEENDEVELOPEDACCORDINGTOASPECIALMINLPMODELFORMULATIONFORMECHANICALSUPERSTRUCTURESMINLPMS,INTRODUCEDINPARTSIANDIITHEMODELCONTAINSANECONOMICOBJECTIVEFUNCTIONOFSELFMANUFACTURINGANDTRANSPORTATIONCOSTSOFTHEGATEASTHEGATOPMODELISNONCONVEXANDHIGHLYNONLINEAR,ITISSOLVEDBYMEANSOFTHEMODIFIEDOA/ERALGORITHMACCOMPANIEDBYTHELINKEDTWOPHASEMINLPSTRATEGY,BOTHIMPLEMENTEDINTHETOPCOMPUTERCODEANEXAMPLEOFTHESYNTHESISISPRESENTEDASACOMPARATIVEDESIGNRESEARCHWORKOFTHEALREADYERECTEDROLLERGATE,THESOCALLEDINTAKEGATEINASWANIIINEGYPTTHEOPTIMALRESULTYIELDS294PERCENTOFNETSAVINGSWHENCOMPAREDTOTHEACTUALCOSTSOFTHEERECTEDGATE1998JOHNWILEYOPTIMIZATIONTOPOLOGYOPTIMIZATIONDISCRETEVARIABLEOPTIMIZATIONMIXEDINTEGERNONLINEARPROGRAMMINGMINLPTHEMODIFIEDOA/ERALGORITHMMINLPSTRATEGYHYDRAULICGATESLIDINGGATEROLLERGATEASWAN1INTRODUCTIONTHISPAPERDESCRIBESTHEMIXEDINTEGERNONLINEARPROGRAMMINGMINLPAPPROACHTOTHESYNTHESISOFROLLERANDSLIDINGGATESTRUCTURES,IETHESIMPLESTTYPESAMONGVERTICALLIFTHYDRAULICSTEELGATES,SEEFIGURE1ROLLERANDSLIDINGGATESAREALSOREGARDEDASTHEMOSTFREQUENTLYMANUFACTUREDTYPESOFHYDRAULICSTEELGATESFORHEADWATERCONTROLTHEYAREUSEDTOREGULATETHEWATERSTREAMONHYDROELECTRICPLANTS,DAMSORSPILLWAYSASHYDRAULICSTEELGATESAREVERYSPECIALSTRUCTURES,ONLYAFEWAUTHORSHAVEDISCUSSEDTHEIROPTIMIZATION,EGKRAVANJAETAL,1DJONGELINGANDKOLKMANASWELLASALMQUISTETALPARTICULARINTERESTWASSHOWNINTHEOPTIMIZATIONNOTOFTHESEROLLERANDSLIDINGGATESBUTOFSIMILARSTRUCTURESINSUCHINVESTIGATIONS,VANDERPLAATSANDWEISSHAARASWELLASGURDALETALOPTIMIZEDSTIFFENEDLAMINATEDCOMPOSITEPANELS,BUTLERANDRINGERTZOPTIMIZEDSTIFFENEDPANELS,FARKASANDJARMAI1OPTIMIZEDWELDEDRECTANGULARCELLULARPLATES,FINCKENORETAL1TREATEDSKINSTRINGERCYLINDERSANDGENDYETAL1STIFFENEDPLATESALMOSTALLAUTHORSUSEDNONLINEARPROGRAMMINGNLPTECHNIQUESGURDALETALPROPOSEDTHEGENETICALGORITHM,WHILEKRAVANJAETAL1DINTRODUCEDMINLPALGORITHMSANDSTRATEGIESTOTHESIMULTANEOUSTOPOLOGYANDPARAMETEROPTIMIZATIONOFTHEGATEINPARTSIOFTHISTHREEPARTSERIESOFPAPERS,AGENERALVIEWOFTHEMINLPAPPROACHTOTHESIMULTANEOUSTOPOLOGYANDPARAMETEROPTIMIZATIONOFSTRUCTURESISPRESENTEDPARTIIDESCRIBESTHEEXTENSIONTOTHESIMULTANEOUSSTANDARDDIMENSIONOPTIMIZATIONBASEDONTHESUPERSTRUCTUREAPPROACHDEFINEDINPARTSIANDII,THEMAINOBJECTIVEOFTHISPAPERPARTIIIISTHEMINLPSYNTHESISOFROLLERANDSLIDINGHYDRAULICSTEELGATESTRUCTURES,OBTAINEDATMINIMALGATECOSTSANDSUBJECTEDTODEFINEDDESIGN,MATERIAL,STRESS,DEFLECTIONANDSTABILITYCONSTRAINTSASTHEMINLPAPPROACHENABLESSIMULTANEOUSTOPOLOGY,PARAMETERANDSTANDARDDIMENSIONOPTIMIZATION,ANUMBEROFGATESTRUCTURALELEMENTSGIRDERSANDPLATES,THEGATEGLOBALGEOMETRY,INTERMEDIATEDISTANCESBETWEENSTRUCTURALELEMENTSANDALLCONTINUOUSANDSTANDARDDIMENSIONSAREOBTAINEDSIMULTANEOUSLYTHISLASTPARTOFTHETHREEPARTSERIESOFPAPERSISDIVIDEDINTOTHREEMAINSECTIONS1SECTION2DESCRIBESHOWDIFFERENTTOPOLOGYANDSTANDARDDIMENSIONALTERNATIVESAREPOSTULATEDANDHOWTHEIRINTERCONNECTIONRELATIONSAREFORMULATEDBYMEANSOFEXPLICITLOGICALCONSTRAINTSINORDERTOPERFORMTOPOLOGYANDSTANDARDDIMENSIONALTERATIONSWITHINTHEOPTIMIZATIONPROCEDURE2SECTION3REPRESENTSAGENERALMINLPOPTIMIZATIONMODELFORROLLERANDSLIDINGGATESTRUCTURESGATOP3FINALLY,INSECTION4,THEPROPOSEDSUPERSTRUCTUREMINLPAPPROACHISAPPLIEDTOTHESYNTHESISOFANALREADYERECTEDROLLERGATE,THESOCALLEDINTAKEGATEINASWANIIINEGYPT2SUPERSTRUCTUREALTERNATIVESANDTHEMODELLINGOFTHEIRDISCRETEDECISIONS21POSTULATIONOFTOPOLOGYANDSTANDARDDIMENSIONALTERNATIVESTHEFIRSTSTEPINTHESYNTHESISOFTHEGATEISTHEGENERATIONOFANMINLPSUPERSTRUCTUREINWHICHDIFFERENTTOPOLOGY/STRUCTUREANDSTANDARDDIMENSIONALTERNATIVESAREEMBEDDEDTOBESELECTEDASTHEOPTIMALRESULTTHEGATESUPERSTRUCTUREALSOCONTAINSTHEREPRESENTATIONOFSTRUCTURALELEMENTSWHICHMAYCONSTRUCTEACHPOSSIBLESTRUCTUREALTERNATIVEASWELLASDIFFERENTSETSOFDISCRETEVALUES,DEFINEDFOREACHSTANDARDDIMENSIONALTERNATIVEASBOTHTHEROLLERANDSLIDINGGATESHAVEALMOSTTHESAMESTRUCTURE,ITWASREASONABLETOPROPOSEASUPERSTRUCTURE,WHICHCOULDWELLBEUSEFULFORBOTHOFTHEM211TOPOLOGYALTERNATIVESTHEGATESUPERSTRUCTURETYPICALLYINCLUDESAREPRESENTATIONOFMAINGATEELEMENTS,WHEREEACHGATEELEMENTISCOMPOSEDOFVARIOUSSTRUCTURALELEMENTS,SUCHASHORIZONTALGIRDERS,VERTICALGIRDERS,STIFFENERSANDPLATEELEMENTSOFTHESKINPLATE,SEEFIGURE2THESUPERSTRUCTURECOMPRISESNMAINGATEELEMENTS,N3N,EACHCONTAININGMHORIZONTALGIRDERS,M3M,THE32VNUMBEROFVERTICALGIRDERSTHROUGHTHEENTIREGATE,V3,ANDTHECORRESPONDINGM122VNUMBEROFSKINPLATEELEMENTSTOEACHMTHHORIZONTALGIRDEROFTHENTHMAINGATEELEMENTANEXTRABINARYVARIABLEYN,MISASSIGNEDTHENUMBEROFHORIZONTALGIRDERSANDCORRESPONDINGPLATEELEMENTSOFTHESKINPLATE,DISTRIBUTEDOVERTHENTHMAINGATEELEMENT,CANTHEREFOREBEDETERMINEDSIMPLYBYNOTE,MNYTHATTHEPROPOSEDMINIMALNUMBEROFIDENTICALVERTICALGIRDERSIS3ANDTHATTHEYCANTAKEONLYODDNUMBERSIFABINARYVARIABLEYVISASSIGNEDTOEACHV,VV,THENUMBEROFVERTICALGIRDERSCANBEOBTAINEDBY32VYVINTHESAMEWAYANEVENNUMBER22VYVOFEQUALHORIZONTALPARTITIONSOFTHEENTIREGATEISPROPOSEDINTHECASEOFVERTICALGIRDERS,WECANSEETHATTHESTRUCTURALELEMENTSCANALSOBEDETERMINEDBYSUITABLELINEARCOMBINATIONSOFBINARYVARIABLESAMONGTHEMAXIMALNUMBERMMAXOFHORIZONTALGIRDERSPEREACHMAINGATEELEMENT,THEUPPERANDLOWERGIRDERSTOGETHERWITHTHEMINIMALNUMBERMMINOFINTERMEDIATEHORIZONTALGIRDERSANDTHEADJOININGSKINPLATEELEMENTSARETREATEDASFIXEDSTRUCTURALELEMENTS,WHICHAREALWAYSPRESENTINTHEOPTIMIZATIONALLOTHERMMAXMMININTERMEDIATEHORIZONTALGIRDERSWITHTHECORRESPONDINGNUMBEROFADJOINEDSKINPLATEELEMENTSARETHENREGARDEDASALTERNATIVESTRUCTURALELEMENTS,WHICHMAYEITHERDISAPPEARORBESELECTEDSINCEONLYALTERNATIVESTRUCTURALELEMENTSPARTICIPATEINTHEDISCRETEOPTIMIZATION,THESIZEOFTHEDISCRETEDECISIONSISSIGNIFICANTLYREDUCEDEACHPOSSIBLECOMBINATIONBETWEENSELECTEDALTERNATIVESTRUCTURALELEMENTSANDFIXEDSTRUCTURALELEMENTSFORMSANEXTRAGATETOPOLOGY/STRUCTUREALTERNATIVE212STANDARDDIMENSIONALTERNATIVESFOURSTANDARDDIMENSIONSAREADDITIONALLYDEFINEDTOREPRESENTTHESTANDARDTHICKNESSESOFSHEETIRONPLATESTHETHICKNESSOFTHESKINPLATETSNFOREACHNTHMAINGATEELEMENT,THEFLANGETHICKNESSOFTHEHORIZONTALGIRDERTFN,THEWEBTHICKNESSOFTHEOUTERHORIZONTALGIRDERM1OR,OUTWNMMM,ANDTHEWEBTHICKNESSOFTHEINNERHORIZONTALGIRDER,1MMIT,SINCETHETHICKNESSTSNHASACOMMONVALUEFORTHEENTIRESKINPLATEOFTHENTHMAINGATEELEMENTANDTHETARETHESAMEFORALLHORIZONTALGIRDERSOFTHENTHMAINGATEELEMENT,IETHEYCORRESPONDTOTHECOMMONSTANDARDDESIGNVARIABLESFORTHESUPERSTRUCTUREORITSPARTFROMTHESPECIAL,STCOMDMINLPMSMODELFORMULATIONINPARTIISIMILARLY,THEWEBTHICKNESSES,WHICHTAKEACOMMONVALUEFORBOTHOUTERHORIZONTALGIRDERSOFTHEOUTWNMNTHMAINGATEELEMENT,AND,WHICHARETHESAMEFORALLTHEINNERINWMTHORIZONTALGIRDERS,CORRESPONDTOTHECOMMONSTANDARDDESIGNVARIABLESOFTHEALTERNATIVESTRUCTURALELEMENTSANEXTRASETOFDISCRETEVALUES,STCOMADOFSTANDARDDIMENSIONALTERNATIVESANDASPECIALSETOFTHESAMESIZEOFBINARYVARIABLESAREINTRODUCEDFOREACHMENTIONEDSTANDARDDIMENSIONEACHSTANDARDDIMENSIONTSNSHALLBEEXPRESSEDWITHINTHEGIVENISTANDARDDIMENSIONALTERNATIVES,II,STANDARDDIMENSIONTFNBYKALTERNATIVES,KK,STANDARDDIMENSIONBYPALTERNATIVES,PP,ANDSTANDARD,OUTWNMDIMENSIONBYRALTERNATIVES,RRTHEVECTOROFIBINARYVARIABLES,INWMTYN,IANDTHEVECTOROFIDISCRETEVALUESQN,IAREASSIGNEDTOTHEVARIABLETSN,THEVECTORSOFKELEMENTSYN,KANDQN,KTOTHEVARIABLETFN,THEVECTORSOFPELEMENTSYN,PANDQN,KTOTHEVARIABLEANDTHEVECTORSOFRELEMENTS,INWMTYN,VANDQN,VTOTHEVARIABLECONSEQUENTLY,THEOVERALLVECTOROFBINARY,INWMTVARIABLESASSIGNEDTOTHEGATESUPERSTRUCTUREISYYN,M,Y,V,YN,I,YN,P,YN,V22MODELINGOFDISCRETEDECISIONSTHEPOSTULATEDGATESUPERSTRUCTUREOFTOPOLOGYANDSTANDARDDIMENSIONALTERNATIVESCANBEFORMULATEDASANMINLPPROBLEMUSINGASPECIALMINLPMODELFORMULATIONMINLPMSFORSIMULTANEOUSTOPOLOGY,PARAMETERANDSTANDARDDIMENSIONOPTIMIZATIONOFMECHANICALSUPERSTRUCTURES,DESCRIBEDINPARTIIASCANBESEENFROMTHEMINLPMS,THEOBJECTIVEFUNCTIONISTYPICALLYSUBJECTEDTOSTRUCTURALANALYSISANDLOGICALCONSTRAINTSWHILESTRUCTURALANALYSISCONSTRAINTSREPRESENTAMATHEMATICALMODELOFASYNTHESIZEDSTRUCTURE,LOGICALCONSTRAINTSAREUSEDFORTHEEXPLICITMODELINGOFLOGICALDECISIONSMODELINGOFDISCRETEDECISIONSTODETERMINETOPOLOGYALTERNATIVESISANOBJECTIVEOFTHEHIGHESTIMPORTANCEFORTHESYNTHESISINORDERTOPERFORMTHESEDECISIONSWITHINTHEMINLPOPTIMIZATION,INTERCONNECTIONLOGICALCONSTRAINTSDYRD,PRAREPROPOSEDWHILEVARIABLES,THEIRBOUNDSANDMOSTOFTHECONSTRAINTSOFTHEMINLPMSMODELFORMULATIONAREREPRESENTEDINPARTII,INTERCONNECTIONLOGICALCONSTRAINTSANDTHECONSTRAINTSDEFININGTOPOLOGYALTERATIONSAREDESCRIBEDINTHISSECTIONTHELATTERONESAREDERIVEDFROMTHEFOLLOWINGBASICINTEGERORMIXEDINTEGERLOGICALCONSTRAINTSAMULTIPLECHOICECONSTRAINTSFORSELECTINGAMONGASETOFUNITSISELECTEXACTLYMUNITS1IIYSELECTMUNITSATTHEMOST2IIMSELECTATLEASTMUNITS3IIYBIFTHENCONDITIONSIFUNITKISSELECTEDTHENUNITIMUSTBESELECTEDYKYI04CACTIVATIONORDEACTIVATIONOFCONTINUOUSVARIABLES,INEQUALITIESOREQUATIONS1EXAMPLETORELATECONTINUOUSVARIABLEXTOTHESCALARVALUEUXUY5IF1,0YXUIFYX2ANOPPOSITERELATIONXU(1Y)610,YXIFYXU3EXAMPLEFORTHEBOUNDSOFCONTINUOUSVARIABLEXX1,0YXXUPY7IF1,0,0UPYXIFYXDINTEGERCUTSCONSTRAINTELIMINATESUNNECESSARYINTEGERCOMBINATIONSYK0,1MEGTHOSEFOUNDATPREVIOUSMINLPITERATIONS,1,I8K|BIKKIIIBINIYWHERE,I|KI|Y0INORDERTODESCRIBETHEMODELINGOFDISCRETEDECISIONS,AGENERALGATESUPERSTRUCTUREFROMFIGURE2ISADDRESSEDINWHICHTHEDEFINEDSTRUCTURALELEMENTSARETYPICALLYHORIZONTALANDVERTICALGIRDERSASTHEMODELINGOFVERTICALGIRDERSISSIMPLIFIEDANDNEEDSNOSPECIALINTERCONNECTIONLOGICALCONSTRAINTS,THEMODELINGOFDISCRETEDECISIONSREGARDINGHORIZONTALGIRDERSPROVEDTOBEMORESOPHISTICATED221MODELINGOFTOPOLOGYALTERATIONSLETUSCONSIDERTHEVERTICALCROSSSECTIONOFTHEGATEELEMENTSUPERSTRUCTUREWITHFIXEDANDALTERNATIVEHORIZONTALGIRDERS,SEEFIGURE3ATHENUMBEROFFIXEDANDALTERNATIVEGIRDERSANDTHEIRLOCATIONSINTHESUPERSTRUCTURECANBEDESCRIBEDBYTHEFOLLOWINGLOGICALCONSTRAINTS9MINMAXMY101,23,111MAXYLOGICALCONSTRAINT9DEFINESTHEMINIMALMMINANDMAXIMALMMAXNUMBEROFSTRUCTURALELEMENTSGIRDERSWHILENUMBERMMINREPRESENTSTHENUMBEROFFIXEDSTRUCTURALELEMENTS,THEDIFFERENCEBETWEENTHEMAXIMALANDMINIMALNUMBEROFELEMENTSMMAXMMINGIVESTHENUMBEROFALTERNATIVESTRUCTURALELEMENTSCONSTRAINT10DEFINESTHEDIRECTIONOFTHEREMOVALOFALTERNATIVEELEMENTSFROMTHETOPDOWNTHESUPERSTRUCTUREFROMFIGURE3ISEVIDENTTHATTHEMOSTUPPERELEMENTISTHEFIXEDONE,WHICHISSETBYTHECONSTRAINT11ITTHENFURTHERFOLLOWSFROMCONSTRAINT10THATALLTHERESTFIXEDELEMENTSARELOCATEDATTHEBOTTOMOFTHESUPERSTRUCTUREHENCE,CONSTRAINTS911REPRESENTTHEEXPLICITMODELFORTOPOLOGYALTERATIONSOFHORIZONTALGIRDERS222MODELINGOFINTERCONNECTIONRELATIONSINTERCONNECTIONRELATIONSBETWEENALTERNATIVEANDFIXEDSTRUCTURALELEMENTSWITHINTHESUPERSTRUCTUREREQUIRESPECIALATTENTIONPAIDTOTHESTRUCTURALSYNTHESISPERFORMEDBYTHEMINLPAPPROACHINTERCONNECTIONRELATIONSEITHERRESTORETHECONNECTIONSBETWEENCURRENTLYSELECTEDEXISTINGSTRUCTURALELEMENTSORCANCELTHERELATIONSBETWEENCURRENTLYREJECTEDDISAPPEARINGSTRUCTURALELEMENTSSINCEMINLPMETHODSOPTIMIZETHETOPOLOGYANDPARAMETERSSIMULTANEOUSLY,ITISNECESSARYTODEFINETHESEINTERCONNECTIONRELATIONSINANEXPLICITEEQUATIONALFORM,SOTHATTHEYCANENABLEINTERCONNECTIONSANDDISCONNECTIONSBETWEENTHEELEMENTSDURINGTHEOPTIMIZATIONPROCESSSPECIALINTERCONNECTIONLOGICALCONSTRAINTSFORINTERCONNECTIONRELATIONSBETWEENTHEALTERNATIVEANDFIXEDSTRUCTURALELEMENTSHAVEBEENPROPOSEDTHEYWILLBEEMBEDDEDINTOTHEMINLPOPTIMIZATIONMODELOFTHEGATESTRUCTURE,ENABLINGTHELATTERTOTHUSBECOMESELFSUFFICIENTFORAUTOMATICTOPOLOGYANDPARAMETEROPTIMIZATIONTHEMODELINGOFINTERCONNECTIONLOGICALCONSTRAINTS,HOWEVER,REQUIRESADDITIONALEFFORT,SINCEMOSTELEMENTCONSTRAINTSINCLUDEFUNCTIONSNOTONLYOFTHEIROWNVARIABLESBUTALSOOFTHEVARIABLESBELONGINGTOTHEIRADJOININGSTRUCTURALELEMENTSSUCHANEXAMPLEIS,EGTHECONSTRAINTOFTHEMOMENTOFINERTIAIN,MOFTHEMTHHORIZONTALGIRDEROFTHENTHMAINGATEELEMENTSEEEQUATION23INTHEFOLLOWINGSECTION,WHICHINCLUDESTHESUBSTITUTEDEXPRESSIONS6OFTHESKINPLATEEFFECTIVEWIDTHWITHTHE,NMSBHEIGHTSBETWEENGIRDERSANDTHESILLHM1ANDHM1OFBOTHADJOININGGIRDERSTHECONSTRAINTSOFTHEMTHINTERMEDIATEHORIZONTALGIRDERARETYPICALLYFUNCTIONSOFTHREEHEIGHTSHM1,HMANDHM1,ANDTWOVERTICALDISTANCESBETWEENHORIZONTALGIRDERS,ANDTHEDISTANCEIS1D1DMHDSIMPLYDEFINEDBYTHECONSTRAINTM2,3,M1121MHDTHEPROBLEMARISESIFHM1ISNOTDEFINEDWHENTHEADJOININGUPPERALTERNATIVEGIRDERTOTHEMTHHORIZONTALGIRDERDOESNOTEXISTFOREXAMPLE,LETUSCONSIDERTHETHIRDGIRDERINFIGURE3AWHICHISTHEUPPERMOSTEXISTINGINTERMEDIATEELEMENTINORDERTODEFINEH4SOASTOFULFILTHECONSTRAINTSOFGIRDER3,H4SHOULDTEMPORARILYBECOMEEQUALTOTHEHEIGHTOFTHEUPPERMOSTFIXEDGIRDERH6HMFIGURE3BTHEMAINIDEAISTOSETALLHEIGHTSOFNONEXISTINGINTERMEDIATEGIRDERSGIRDERS4AND5INFIGURE3ATOTHEVALUEOFH6BYMEANSOFTHELOGICALCONSTRAINTS,M2,3,M113MUPHDY,M2,3,M114,LOWEXNOTE,THATCONSTRAINTS13AND14RESTORETHEUPPERANDLOWERMUPHD,MLOWEXHDBOUNDSOFTHEDISTANCEWHENTHECORRESPONDINGGIRDEREXISTSYM1MHDANDSETITTOZERO,OTHERWISEWHENTHEDISTANCEISZERO,ITFOLLOWSFROMCONSTRAINT12THATHMBECOMESEQUALTOHINTHISWAYALLDISTANCESANDHEIGHTSAREDEFINEDFORANYGIRDERTHATBECOMESTHEUPPERMOSTSELECTEDINTERMEDIATEONEANDREESTABLISHESITSCONNECTIONTOTHEUPPERMOSTFIXEDGIRDERASTHEUPPERMOSTSELECTEDINTERMEDIATEGIRDERISCONNECTEDTOTHEUPPERMOSTFIXEDGIRDEREGGIRDER3TOGIRDER6INFIGURE3A,THELATTERSHOULDALSO,INTHESIMILARWAY,BECONNECTEDTOTHEFORMERONEGIRDER6TOGIRDER3INFIGURE3ACONSTRAINTSFORTHEUPPERMOSTFIXEDGIRDERARETHENJUSTFUNCTIONSOFTWOHEIGHTSHMANDHM1ANDADISTANCETHE1MHDPROBLEMARISESIFSOMEINTERMEDIATEGIRDERSDONOTEXIST,EGGIRDERS4AND5INFIGURE3AINSUCHCASES,HM1SHOULDNOTBECONSIDEREDINSTEAD,THEHEIGHTHSH3INFIGURE3AOFTHEUPPERSELECTEDINTERMEDIATEGIRDERSHOULDBEDEFINEDANDSUBSTITUTEDFORHM1THEVERTICALDISTANCEDHSOFTHEUPPERMOSTSELECTEDINTERMEDIATEGIRDERISTHENDEFINEDBYTHECONSTRAINT15HSMSDTHESELECTIONOFTHEHEIGHTHSAMONGALLHMCANBEPERFORMEDBYTHEFOLLOWINGLOGICALCONSTRAINTS,M2,3,M21611UPUPSMSMSHY,M2,3,M217SSSH1811UPSMSMY19SSHCONSTRAINTS16AND17SETHSTOTHEHEIGHTHMOFTHATMTHEXISTINGHORIZONTALGIRDERYM1,WHICHHASTHEEXISTINGADJOININGLOWERGIRDERYM11ANDTHEDISAPPEARINGADJOININGUPPERGIRDERYM10HOWEVER,FORM“M1THENEXTUPPERGIRDERALWAYSEXISTS,SINCEITISFIXED,IEYM1INTHISCASEWENEEDADDITIONALCONSTRAINTS,IE18AND19,WHICHSETHSTOTHEHEIGHTHM13THEMINLPOPTIMIZATIONMODELFORROLLERANDSLIDINGHYDRAULICSTEELG
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:平板定轮闸门设计(全套含CAD图纸)
链接地址:https://www.renrendoc.com/p-10061562.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!