湖南省株洲市醴陵市2017届九年级上第一次月考数学试卷含答案解析_第1页
湖南省株洲市醴陵市2017届九年级上第一次月考数学试卷含答案解析_第2页
湖南省株洲市醴陵市2017届九年级上第一次月考数学试卷含答案解析_第3页
湖南省株洲市醴陵市2017届九年级上第一次月考数学试卷含答案解析_第4页
湖南省株洲市醴陵市2017届九年级上第一次月考数学试卷含答案解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第 1 页(共 24 页) 2016年湖南省株洲市醴陵市九年级(上)第一次月考数学试卷 一、选择题(每小题 3 分,共计 30 分) 1方程( x 2)( x+3) =0 的解是( ) A x=2 B x= 3 C 2, D , 3 2一元二次方程( x+6) 2=16 可转化为两个一元一次方程,其中一个一元一次方程是 x+6=4,则另一个一元一次方程是( ) A x 6= 4 B x 6=4 C x+6=4 D x+6= 4 3用配方法解一元二次方程 6x 10=0 时,下列变形正确的为( ) A( x+3) 2=1 B( x 3) 2=1 C( x+3) 2=19 D( x 3) 2=19 4一元二次方程 4x+5=0 的根的情况是( ) A有两个不相等的实数根 B有两个相等的实数根 C只有一个实数根 D没有实数根 5三角形两边长分别为 3 和 6,第三边的长是方程 13x+36=0 的两根,则该三角形的周长为( ) A 13 B 15 C 18 D 13 或 18 6反比例函数 y= 的图象在每个象限内, y 随 x 的增大而减小,则 k 的值可为( ) A 1 B 0 C 1 D 2 7某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植 3 株时,平均每株盈利 4 元;若每盆增加 1 株,平均每株盈利减少 ,要使每盆的盈利达到 15元,每盆应多植多少株?设每盆多植 x 株,则可以列出的方程是( ) A( 3+x)( 4 =15 B( x+3)( 4+=15 C( x+4)( 3 =15D( x+1)( 4 =15 8一次函数 y=kx+b( k 0)与反比例函数 的图象在 同一直角坐标系下的大致图象如图所示,则 k、 b 的取值范围是( ) 第 2 页(共 24 页) A k 0, b 0 B k 0, b 0 C k 0, b 0 D k 0, b 0 9如图,正方形 于第一象限,边长为 3,点 A 在直线 y=x 上,点 A 的横坐标为 1,正方形 边分别平行于 x 轴、 y 轴若双曲线 y= 与正方形 k 的取值范围为( ) A 1 k 9 B 2 k 34 C 1 k 16 D 4 k 16 10有两个一元二次方程: M: bx+c=0; N: bx+a=0其中 a+c=0,以下列四个结论中,错误的是( ) A如果方程 M 有两个不相等的实数根,那么方程 N 也有两个不相等的实数根 B如果方程 M 有两根符号相同,那么方程 N 的两根符号也相同 C如果 5 是方程 M 的一个根,那么 是方程 N 的一个根 D如果方程 M 和方程 N 有一个相同的根,那么这个根必是 x=1 二、填空题(每小题 3 分,共 24 分) 11若方程 4x+m=0 有两个相等的实数根,则 m 的值是 12近视眼镜的度数 y(度)与镜片焦距 x(米)成反比例,已知 400 度近视眼镜镜片的焦距为 ,则眼镜度数 y 与镜片焦距 x 之间的函数关系式为 (无需确定 x 的取值范围) 13若反比例函数 的图象上有两点 A( 1, B( 2, 则 第 3 页(共 24 页) “ ”或 “=”或 “ ”) 14若一元二次方程 2016=0 有一根为 x= 2,则 2a+b= 15已知 , 是一元二次方程 5x 2=0 的两个实数根,则 2+2+2 的值为 16某果园 2011 年水果产量为 100 吨, 2013 年水果产量为 144 吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为 x,则根据题意可列方程为 17如图所示,直线 y=x+a 2 与双曲线 y= 交于 A, B 两点,则当线段 长度取最小值时, a 的值为 18如图,直线 x=t( t 0)与反比例函数 的图象分别交于 B, C 两点, A 为 y 轴上的任意一点,则 面积为 三、解答题(共 66 分) 19解方程: x 3=0 2x( x 1) +3x 3=0 20已知方程 x2+=0 的一个根是 1,求 k 的值及方程另一根 21如图,反比例函数 y= 的图象与一次函数 y=kx+b 的图象相交于两点 A( m,3)和 B( 3, n) 第 4 页(共 24 页) ( 1) m= , n= ; ( 2)求一次函数的表达式 22某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长 25m)另外三边用木栏围成,木栏长 40m ( 1)若养鸡场面积为 200鸡场靠墙的一边长 ( 2)养鸡场面积能达到 250?如果能,请给出设计方案;如果不能,请说明理由 23关于 x 的一元二次方程 2k+1) x+=0 有两个不等实根 ( 1)求实数 k 的取值范围 ( 2)若方程两实根 足 |x1 k 的值 24在平面直角坐标系中,点 A( 3, 4)关于 y 轴的对称点为点 B,连接 比例函数 y= ( x 0)的图象经过点 B,过点 B 作 x 轴于点 C,点 P 是该反比例函数图象上任意一点,过点 P 作 x 轴于点 D,点 Q 是线段 任意一点,连接 ( 1)求 k 的值; ( 2)判断 面积是否相等,并说明理由 第 5 页(共 24 页) 25如图,已知正比例函数 y=2x 和反比例函数的图象交于点 A( m, 2) ( 1)求反比例函数的解析式; ( 2)观察图象,直接写出正比例函数值大于反比例函数值时自变量 x 的取值范围; ( 3)若双曲线上点 C( 2, n)沿 向平移 个单位长度得到点 B,判断四边形 形状并证明你的结论 26如图所示,在 , C=90, P 从点 A 出发沿边点 C 以 1cm/s 的速度移动,点 Q 从 C 点出发沿 向点 B 以 2cm/s 的速度移动,若如果 P、 Q 同时出发: ( 1)几秒钟后,可使 Q? ( 2)几秒钟后,可使 为 3 ( 3)几秒钟后,可使四边形 面积占 面积三分之二? ( 4)若点 P 从点 A 出发沿边 向移动,点 Q 从 C 点出发沿 向移动,是否存在某一时 刻,使得 等腰三角形? 第 6 页(共 24 页) 第 7 页(共 24 页) 2016年湖南省株洲市醴陵市九年级(上)第一次月考数学试卷 参考答案与试题解析 一、选择题(每小题 3 分,共计 30 分) 1方程( x 2)( x+3) =0 的解是( ) A x=2 B x= 3 C 2, D , 3 【考点】 解一元二次方程 【分析】 根据已知得出两个一元一次方程,求出方程的解即可 【解答】 解:( x 2)( x+3) =0, x 2=0, x+3=0, , 3, 故选 D 2一元二次方程( x+6) 2=16 可转化为两个一元一次方程,其中一个一元一次方程是 x+6=4,则另一个一元一次方程是( ) A x 6= 4 B x 6=4 C x+6=4 D x+6= 4 【考点】 解一元二次方程 【分析】 方程两边直接开平方可达到降次的目的,进而可直接得到答案 【解答】 解:( x+6) 2=16, 两边直接开平方得: x+6= 4, 则: x+6=4, x+6= 4, 故选: D 3用配方法解一元二次方程 6x 10=0 时, 下列变形正确的为( ) A( x+3) 2=1 B( x 3) 2=1 C( x+3) 2=19 D( x 3) 2=19 【考点】 解一元二次方程 【分析】 方程移项变形后,利用完全平方公式化简得到结果,即可做出判断 第 8 页(共 24 页) 【解答】 解:方程移项得: 6x=10, 配方得: 6x+9=19,即( x 3) 2=19, 故选 D 4一元二次方程 4x+5=0 的根的情况是( ) A有两个不相等的实数根 B有两个相等的实数根 C只有一个实数根 D没有实数根 【考点】 根的判别式 【分析】 把 a=1, b= 4, c=5 代入 =4行计算,根据计算结果判断方程根的情况 【解答】 解: a=1, b= 4, c=5, =4 4) 2 4 1 5= 4 0, 所以原方程没有实数根 故选: D 5三角形两边长分别为 3 和 6,第三边的长是方程 13x+36=0 的两根,则该三角形的周长为( ) A 13 B 15 C 18 D 13 或 18 【考点】 解一元二次方程 角形三边关系 【分析】 先求出方程 13x+36=0 的两根,再根据三角形的三边关系定理,得到合题意的 边,进而求得三角形周长即可 【解答】 解:解方程 13x+36=0 得, x=9 或 4, 即第三边长为 9 或 4 边长为 9, 3, 6 不能构成三角形; 而 4, 3, 6 能构成三角形, 所以三角形的周长为 3+4+6=13, 故选: A 第 9 页(共 24 页) 6反比例函数 y= 的图象在每个象限内, y 随 x 的增大而减小,则 k 的值可为( ) A 1 B 0 C 1 D 2 【考点】 反比例函数的性质 【分析】 根据反比例函数的图象和性质, k 1 0,则 k 1 【解答】 解: y= 的图象在每个象限内, y 随 x 的增大而减小, k 1 0, k 1 故选 D 7某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植 3 株时,平均每株盈利 4 元;若每盆增加 1 株,平均每株盈利减少 ,要使每盆的盈利达到 15元,每盆应多植多少株?设每盆多植 x 株,则可以列出的方程是( ) A( 3+x)( 4 =15 B( x+3)( 4+=15 C( x+4)( 3 =15D( x+1)( 4 =15 【考点】 由实际问题抽象 出一元二次方程 【分析】 根据已知假设每盆花苗增加 x 株,则每盆花苗有( x+3)株,得出平均单株盈利为( 4 ,由题意得( x+3)( 4 =15 即可 【解答】 解:设每盆应该多植 x 株,由题意得 ( 3+x)( 4 =15, 故选: A 8一次函数 y=kx+b( k 0)与反比例函数 的图象在同一直角坐标系下的大致图象如图所示,则 k、 b 的取值范围是( ) A k 0, b 0 B k 0, b 0 C k 0, b 0 D k 0, b 0 第 10 页(共 24 页) 【考点】 反比例函数与一次函数的交点问题 【分析】 本题需先判断出一次函数 y=kx+b 与反比例函数 的图象在哪个象限内,再判断出 k、 b 的大小即可 【解答】 解: 一次函数 y=kx+b 的图象经过二、三、四象限, k 0, b 0 又 反比例函数 的图象经过二、四象限, k 0 综上所述, k 0, b 0 故选 C 9如图,正方形 于第一象限,边长为 3,点 A 在直线 y=x 上,点 A 的横坐标为 1,正方形 边分别平行于 x 轴、 y 轴若双曲线 y= 与正方形 k 的取值范围为( ) A 1 k 9 B 2 k 34 C 1 k 16 D 4 k 16 【考点】 反比例函数与一次函数的交点问题 【分析】 先根据题意求出 A 点的坐标,再根据 C=3, 别平行于 y 轴求出 B、 C 两点的坐标,再根据双 曲线 y= ( k 0)分别经过 A、 C 两点时 k 的取值范围即可 【解答】 解:点 A 在直线 y=x 上,其中 A 点的横坐标为 1,则把 x=1 代入 y=x 解得 y=1,则 A 的坐标是( 1, 1), C=3, C 点的坐标是( 4, 4), 当双曲线 y= 经过点( 1, 1)时, k=1; 第 11 页(共 24 页) 当双曲线 y= 经过点( 4, 4)时, k=16, 因而 1 k 16 故选: C 10有两个一元二次方程: M: bx+c=0; N: bx+a=0其中 a+c=0,以下列四个结论中,错误的是( ) A如果方程 M 有两个不相等的实数根,那么方程 N 也有两个不相等的实数根 B如果方程 M 有两根符号相同,那么方程 N 的两根符号也相同 C如果 5 是方程 M 的一个根,那么 是方程 N 的一个根 D如果方程 M 和方程 N 有一个相同的根,那么这个根必是 x=1 【考点】 根的判别式 【分析】 求出方程 M: bx+c=0 的判别式 1=4方程 N: bx+a=0 的判别式 2=4根据判别式的意义、根与系数的关系以及方程的解的意义求解即可 【解答】 解: A、如果方程 M 有两个不相等的实数根,那么 1=40,所以 2=40,所以方程 N 也有两个不相等的实数,结论正确,故本选项不符合题意; B、如果方程 M 有两根符号相同,那么两根之积 0,所以 0,即方程 N 的两根之积 0,所以方程 N 的两根符号也相同,结 论正确,故本选项不符合题意; C、如果 5 是方程 M 的一个根,那么 25a+5b+c=0,所以 a+ b+ c=0,所以 是方程 N 的一个根,结论正确,故本选项不符合题意; D、如果方程 M 和方程 N 有一个相同的根,那么 bx+c=bx+a,整理得( a c) x2=a c,当 a=c 时, x 为任意数;当 a c 时, x= 1结论错误,故本选项符合题意; 故 选 D 二、填空题(每小题 3 分,共 24 分) 11若方程 4x+m=0 有两个相等的实数根,则 m 的值是 4 第 12 页(共 24 页) 【考点】 根的判别式 【分析】 若一元二次方程有两等根,则根的判别式 =4,建立关于 m 的方程,求出 m 的取值 【解答】 解: 方程 4x+m=0 有两个相等的实数根, =46 4m=0, 解之得, m=4 故本题答案为: 4 12近视眼镜的度数 y(度)与镜片焦距 x(米)成反比例,已知 400 度近视眼镜镜片的焦距为 ,则眼镜度数 y 与镜片焦距 x 之间的函数关系 式为 y= (无需确定 x 的取值范围) 【考点】 根据实际问题列反比例函数关系式 【分析】 由于近视眼镜的度数 y(度)与镜片焦距 x(米)成反比例,可设 y= ,由于点( 400)在此函数解析式上,故可先求得 k 的值 【解答】 解:根据题意近视眼镜的度数 y(度)与镜片焦距 x(米)成反比例,设 y= , 由于点( 400)在此函数解析式上, k=400=100, y= 故答案为: y= 13若反比例函数 的图象上有两点 A( 1, B( 2, 则 “ ”或 “=”或 “ ”) 【考点】 反比例函数图象上点的坐标特征;反比例函数的性质 【分析】 根据反比例函数的性质,可得该函数在每个象限 的增减性,比较 第 13 页(共 24 页) 横坐标大小,可得答案 【解答】 解:根据反比例函数的性质, 可得反比例函数 的图象在第二四象限,且在每个象限中, y 随 x 的增大而增大; 对于 A( 1, B( 2, 有两点都在第四象限,且 1 2,则 故答案为 14若一元二次方程 2016=0 有一根为 x= 2,则 2a+b= 1008 【考点】 一元二次方程的解 【分析】 由方程有一根为 2,将 x= 2 代入方程,整理后得到关于 a, b 的关系式,将求出的关系式代入所求的式子中即可求出值 【解答】 解: 2016=0 有一根为 x= 2, 将 x= 2 代入方程得: a ( 2) 2+2b 2016=0,即 4a+2b=2016, 则 2a+b=1008 故答案为: 1008 15已知 , 是一元二次方程 5x 2=0 的两个实数根,则 2+2+2 的值为 25 【考点】 根与系数的关系 【分析】 根据方程各项的系数结合根与系数的关系可得出 +=5、 = 2, 将2+2+2 变形为( +) 2,代入数据即可得出结论 【解答】 解: , 是一元二次方程 5x 2=0 的两个实数根, +=5, = 2, 2+2+2=( +) 2=52=25 故答案为: 25 16某果园 2011 年水果产量为 100 吨, 2013 年水果产量为 144 吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为 x,则根据题意可第 14 页(共 24 页) 列方程为 100( 1+x) 2=144 【考点】 由实际问题抽象出一元二次方程 【分析】 2013 年的产量 =2011 年的产量 ( 1+年平均增长率) 2,把相关数值代入即可 【解答】 解:设该果园水果产量的年平均增长率为 x,则 2012 年的产量为 100( 1+x)吨, 2013 年的产量为 100( 1+x)( 1+x) =100( 1+x) 2 吨, 根据题意,得 100( 1+x) 2=144, 故答案为 100( 1+x) 2=144 17如图所示,直线 y=x+a 2 与双曲线 y= 交于 A, B 两点,则当线段 长度取最小值时, a 的值为 2 【考点】 反比例函数与一次函数的交点问题 【分析】 当线段 长度取最小值时,直线的解析式是 y=x,据此即可求得 【解答】 解:当线段 长度取最小值时,直线的解析式是 y=x, 则 a 2=0, 解得: a=2 故答案是: 2 18如图,直线 x=t( t 0)与反比例函数 的图象分别交于 B, C 两点, A 为 y 轴上的任意一点,则 面积为 第 15 页(共 24 页) 【考点】 反比例函数系数 k 的几何意义 【分析】 先分别求出 B、 C 两点的坐标,得到 长度,再根据三角形的面积公式即可得出 面积 【解答】 解:解:把 x=t 分别代入 y= , y= ,得 y= , y= , 所以 B( t, )、 C( t, ), 所以 ( ) = A 为 y 轴上的任意一点, 点 A 到直线 距离为 t, 面积 = t= 故答案是: 三、解答题(共 66 分) 19解方程: x 3=0 2x( x 1) +3x 3=0 【考点】 解一元二次方程 一元二次方程 【分析】 ( 1)利用求根公式法解方程; ( 2)利用因式分解法解方程 【解答】 解: =( 1) 2 4 1 ( 3) =13, x= 所以 , ; 2x( x 1) +3( x 1) =0 第 16 页(共 24 页) ( x 1)( 2x+3) =0, x 1=0 或 2x+3=0, 所以 , 20已知方程 x2+=0 的一个根是 1,求 k 的值及方程另一根 【考点】 根与系数的关系 【分析】 根据方程的根的定义,代入即可得出 k 的值,再由两根之和得出方程的另一个根 【解答】 解: 方程 x2+=0 的一个根是 1, 1+k+3=0, 解得 k= 4, 设方程的另一个根为 1+ k, , k 的值为 4,方程另一根为 5 21如图,反比例函数 y= 的图象与一次函数 y=kx+b 的图象相交于两点 A( m,3)和 B( 3, n) ( 1) m= 2 , n= 2 ; ( 2)求一次函数的表达式 【考点】 反比例函数与一次函数的交点问题 第 17 页(共 24 页) 【分析】 ( 1)把 A 和 B 的坐标代入反比例函数的解析式即可求得 m 和 n 的值; ( 2)利用待定系数法即可求解 【解答】 解:( 1)把( m, 3)代入 y= 得 m= =2, 把( 3, n)代入 y= 得 n= = 2 故答案是: 2, 2; ( 2)设一次函数的解析式是 y=kx+b, 则 , 解得: , 则一次函数的解析式是 y=x+1 22某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长 25m)另外三边用木栏围成,木栏长 40m ( 1)若养鸡场面积为 200鸡场靠墙的一边长 ( 2)养鸡场面积能达到 250?如果能,请给出设计方案;如果不能,请说明理由 【考点】 一元二次方程的应用 【分析】 ( 1)首先设出鸡场宽为 x 米,则长( 40 2x)米,然后根据矩形的面积=长 宽,用未知数表示出鸡场的面积,根据面积 为 200得方程,解方程即可; ( 2)要求鸡场的面积能否达到 250 平方米,只需让鸡场的面积先等于 250,然后看得出的一元二次方程有没有解,如果有就证明可以达到 250 平方米,如果方程无实数根,说明不能达到 250 平方米 【解答】 解:( 1)设宽为 x 米,长( 40 2x)米,根据题意得: x( 40 2x) =200, 20x 200=0, 第 18 页(共 24 页) 解得: x1=0, 则鸡场靠墙的一边长为: 40 2x=20(米), 答:鸡场靠墙的一边长 20 米 ( 2)根据题意得: x( 40 2x) =250, 20x 250=0, 402 4 ( 2) ( 250) 0, 方程无实数根, 不能使鸡场的面积能达到 250 23关于 x 的一元二次方程 2k+1) x+=0 有两个不等实根 ( 1)求实数 k 的取值范围 ( 2)若方程两实根 足 |x1 k 的值 【考点】 根的判别式;根与系数的关系 【分析】 ( 1)根据方程有两个不相等的实数根可得 =( 2k+1) 2 4( ) =4k+1 44=4k 3 0,求出 k 的取值范围 ; ( 2)首先判断出两根均小于 0,然后去掉绝对值,进而得到 2k+1=,结合 【解答】 解:( 1) 原方程有两个不相等的实数根, =( 2k+1) 2 4( ) =4k+1 44=4k 3 0, 解得: k ; ( 2) k , x1+( 2k+1) 0, 又 x1x2= 0, 0, 0, | ( x1+=2k+1, |x1 2k+1=, , , 第 19 页(共 24 页) 又 k , k=2 24在平面直角坐标系中,点 A( 3, 4)关于 y 轴的对称点为点 B,连接 比例函数 y= ( x 0)的图象经过点 B,过点 B 作 x 轴于点 C,点 P 是该反比例函数图象上任意一点,过点 P 作 x 轴于点 D,点 Q 是线段 任意一点,连接 ( 1)求 k 的 值; ( 2)判断 面积是否相等,并说明理由 【考点】 反比例函数综合题 【分析】 ( 1)根据点 B 与点 A 关于 y 轴对称,求出 B 点坐标,再代入反比例函数解析式解可求出 k 的值; ( 2)设点 P 的坐标为( m, n),点 P 在反比例函数 y= ( x 0)的图象上,求出 S 据 x 轴, , ,点 Q 在线段 ,求出 S 可 【解答】 解:( 1) 点 B 与点 A 关于 y 轴对称, A( 3, 4), 点 B 的坐标为( 3, 4), 反比例函数 y= ( x 0)的图象经过点 B =4, 解得 k=12 ( 2)相等理由如下: 设点 P 的坐标为( m, n),其中 m 0, n 0, 第 20 页(共 24 页) 点 P 在反比例函数 y= ( x 0)的图象上, n= ,即 2 S D= 12=6, A( 3, 4), B( 3, 4), x 轴, , , 点 Q 在线段 , S C= 3 4=6 S 25如图,已知正比例函数 y=2x 和反比例函数的图象 交于点 A( m, 2) ( 1)求反比例函数的解析式; ( 2)观察图象,直接写出正比例函数值大于反比例函数值时自变量 x 的取值范围; ( 3)若双曲线上点 C( 2, n)沿 向平移 个单位长度得到点 B,判断四边形 形状并证明你的结论 【考点】 反比例函数综合题 【分析】 ( 1)设反比例函数的解析式为 y= ( k 0),然后根据条件求出 A 点坐标, 再求出 k 的值,进而求出反比例函数的解析式; ( 2)直接由图象得出正比例函数值大于反比例函数值时自变量 x 的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论