耳机塑料模具设计【18张CAD图纸和说明书】
收藏
资源目录
压缩包内文档预览:(预览前20页/共42页)
编号:10106406
类型:共享资源
大小:8.62MB
格式:RAR
上传时间:2018-05-15
上传人:俊****计
认证信息
个人认证
束**(实名认证)
江苏
IP属地:江苏
40
积分
- 关 键 词:
-
耳机
塑料
模具设计
18
cad
图纸
以及
说明书
仿单
- 资源描述:
-
摘要
近年来,工程塑料以其优异的性能获得了越来越广泛的应用。而注塑模具是
其中发展较快的种类,在人们生活的各个领域都能够见到塑料制品。因此,研究
注塑模具对了解塑料产品的生产过程和提高产品质量有很大意义。
本设计分析了耳机的结构,提出了模具设计的关键点,设计了模具的整体结
构。根据塑件分型面的位置,设计了斜导柱外侧抽芯结构,零件采用了单分型面
的点浇口,提高了零件的外面质量。通过对塑件进行工艺的分析及其结构分析,
从产品结构工艺性,具体模具结构出发,对模具的浇注系统、模具成型部分的结
构、顶出系统、注射机的选择及有关参数的校核都有详细的设计。该模具一模四
腔,采用顶针顶出结构。经过生产验证,该模具结构合理,动作可靠。
关键词:耳机;塑料模具;注射机





- 内容简介:
-
毕业设计(论文)中期报告题目耳机外壳塑料模具设计系别机电信息系专业机械设计制造及其自动化班级姓名学号导师2013年3月25日1设计(论文)进展状况1分析零件的成形工艺性通过查阅书籍资料及查阅网络数据,发现聚乙烯塑料重量轻,物理性能、化学性能及电气性能等均很优良,且很容易成型,价格便宜。所以,最终确定所制作塑件材料为低压聚乙烯,并根据实体塑件测量出实际尺寸。2)浇注系统的选择根据所选塑料的工艺性及塑件的形状,决定选取点浇法浇注,所选浇口类型为侧浇口。3)分型面的选择选择塑件截面最大的部位。4)浇注系统的设计与选择包括主流道、分流道、浇注口的设计与选择。5)绘制完成了塑件的CAD二维图和PROE三维图,绘制模具装配图草图。6)设计的耳机塑件图见图1二维零件图图2三维零件图7)方案确定(1)课题名称耳机模具设计(2)材料选择聚乙烯(3)生产批量大(4)精度要求中(5)塑料等级6级(6)方案确定该产品为大批量生产。故设计的模具要有较高的注塑效率,浇注系统要能自动脱模,可采用点浇口自动脱模结构。由于该塑件要求批量大,制件较小,为取得较大的经济效益,所以模具采用一模四腔结构。此方案生产效率高,操作简便,动作可靠,方便脱出流道凝料,经济性价比高,故选此次模具设计选用方案。模具设计图见图3图3装配图2存在问题及解决措施在本次设计阶段内,我深刻的体会到自己所储备的知识的不足,以及所查阅资料的缺乏和片面性。尤其针对于注塑机的选型过程,大部分的资料里面都只有注塑机的型号和具体性能数据,但是却缺少如何选择与校核的方法,令人百思不得其解。最后,本着求同存异的想法,综合多处查询资料的结果,选择基础结构,进行设计。我也应该加强自己对塑料模具知识的学习,努力使自己所设计出来的模具更具备可行性和实用性。同时,也应该加强自己与老师、与同学之间的沟通,使自己的设计在互相印证中得到提高和完善,加深自己对本次设计的理解。最后,我相信自己可以保持积极乐观的态度去继续接下来的设计过程。在老师的悉心教导下,能够快速、有效的完成所有设计流程,并最终顺利结束本次毕业设计。3后期工作安排1、接下来将用两周左右的时间对成型零件的设计计算彻底完成。2、用两周时间绘制模具各主要零部件的零件图及总体装配图。3、用两周时间用PROE绘图软件对主要零部件进行三维建模,绘制出爆炸图。4、用两周时间整理相关资料,撰写毕业论文,准备毕业答辩。指导教师签字年月日INTJADVMANUFTECHNOL2001172973042001SPRINGERVERLAGLONDONLIMITEDOPTIMUMGATEDESIGNOFFREEFORMINJECTIONMOULDUSINGTHEABDUCTIVENETWORKJCLINDEPARTMENTOFMECHANICALDESIGNENGINEERING,NATIONALHUWEIINSTITUTEOFTECHNOLOGY,YUNLIN,TAIWANTHISSTUDYUSESTHEINJECTIONPOSITIONANDSIZEOFTHEGATEASTHEMAJORCONTROLPARAMETERSFORASIMULATEDINJECTIONMOULDONCETHEINJECTIONPARAMETERSGATESIZEANDGATEPOSITIONAREGIVEN,THEPRODUCTPERFORMANCEDEFORMATIONCANBEACCURATELYPREDICTEDBYTHEABDUCTIVENETWORKDEVELOPEDTOAVOIDTHENUMEROUSINFLUENCINGFACTORS,FIRSTTHEPARTLINEOFTHEPARAMETEREQUATIONISCREATEDBYANABDUCTIVENETWORKTOLIMITTHERANGEOFTHEGATETHEOPTIMALINJECTIONPARAMETERSCANBESEARCHEDFORBYASIMULATIONANNEALINGSAOPTIMISATIONALGORITHM,WITHAPERFORMANCEINDEX,TOOBTAINAPERFECTPARTTHEMAJORPURPOSEISSEARCHINGFORTHEOPTIMALGATELOCATIONONTHEPARTSURFACE,ANDMINIMISINGTHEAIRTRAPANDDEFORMATIONAFTERPARTFORMATIONTHISSTUDYALSOUSESAPRACTICALEXAMPLEWHICHHASBEENANDPROVEDBYEXPERIMENTTOACHIEVEASATISFACTORYRESULTKEYWORDSABDUCTIVENETWORKINJECTIONMOULDSIMULATIONANNEALINGSA1INTRODUCTIONOWINGTOTHERAPIDDEVELOPMENTOFINDUSTRYANDCOMMERCEINRECENTYEARS,THEREISANEEDFORRAPIDANDHIGHVOLUMEPRODUCTIONOFGOODSTHEPRODUCTSAREMANUFACTUREDUSINGMOULDSINORDERTOSAVETHETIMEANDCOSTPLASTICPRODUCTSARETHEMAJORITYOWINGTOTHESEPRODUCTSNOTREQUIRINGCOMPLICATEDPROCESSESITISPOSSIBLETOCOPEWITHMARKETDEMANDSPEEDILYANDCONVENIENTLYINTRADITIONALPLASTICPRODUCTION,THEDESIGNSOFTHEPORTIONSOFTHEMOULDAREDETERMINEDBYHUMANSHOWEVER,BECAUSEOFTHEINCREASEDPERFORMANCEREQUIREMENTS,THECOMPLEXITYOFPLASTICPRODUCTSHASINCREASEDFIRST,THEGEOMETRICSHAPESOFTHEPLASTICPRODUCTSAREDIFFICULTTODRAW,ANDTHEINTERNALSHAPEISOFTENCOMPLEXWHICHALSOAFFECTSTHEPRODUCTIONOFTHEPRODUCTINJECTIONPROCESSINGCANBEDIVIDEDINTOTHREESTAGESCORRESPONDENCEANDOFFPRINTREQUESTSTODRJCLIN,DEPARTMENTOFMECHANICALDESIGNENGINEERING,NATIONALHUWEIINSTITUTEOFTECHNOLOGY,YUNLIN632,TAIWANEMAILLINRCKSUNWSNHITEDUTW1HEATTHEPLASTICMATERIALTOAMOLTENSTATETHEN,BYHIGHPRESSURE,FORCETHEMATERIALTOTHERUNNER,ANDTHENINTOTHEMOULDCAVITY2WHENTHEFILLINGOFTHEMOULDCAVITYISCOMPLETED,MOREMOLTENPLASTICSHOULDBEDELIVEREDINTOTHECAVITYATHIGHPRESSURETOCOMPENSATEFORTHESHRINKAGEOFTHEPLASTICTHISENSURESCOMPLETEFILLINGOFTHEMOULDCAVITY3TAKEOUTTHEPRODUCTAFTERCOOLINGTHOUGHTHEFILLINGPROCESSISONLYASMALLPROPORTIONOFTHECOMPLETEFORMATIONCYCLE,ITISVERYIMPORTANTIFFILLINGININCOMPLETE,THEREISNOPRESSUREHOLDINGANDCOOLINGISREQUIREDTHUS,THEFLOWOFTHEPLASTICFLUIDSHOULDBECONTROLLEDTHOROUGHLYTOENSURETHEQUALITYOFTHEPRODUCTTHEISOTHERMALFILLINGMODELOFANEWTONIANFLUIDISTHESIMPLESTINJECTIONMOULDFLOWFILLINGMODELRICHARDSON1PRODUCEDACOMPLETEANDDETAILEDCONCEPTTHEMAJORCONCEPTISBASEDONTHEAPPLICATIONOFLUBRICATIONTHEORY,ANDHESIMPLIFIEDTHECOMPLEX3DFLOWTHEORYTO2DHELESHAWFLOWTHEHELESHAWFLOWWASUSEDTOSIMULATETHEPOTENTIALFLOWANDWASFURTHERMOREUSEDINTHEPLASTICITYFLOWOFTHEPLASTICHEASSUMEDTHEPLASTICITYFLOWONANEXTREMELYTHINPLATEANDFULLYDEVELOPEDTHEFLOWBYIGNORINGTHESPEEDCHANGETHROUGHTHETHICKNESSKAMALETALUSEDSIMILARMETHODSTOOBTAINTHEFILLINGCONDITIONFORARECTANGULARMOULDCAVITY,ANDTHEANALYTICALRESULTOBTAINEDWASALMOSTIDENTICALTOTHEEXPERIMENTALRESULTPLASTICMATERIALFOLLOWSTHENEWTONIANFLUIDMODELFORFLOWINAMOULDCAVITY,ANDBIRDETAL24DERIVEDMOULDFLOWTHEORYBASEDONTHISWHENTHESHAPEOFAMOULDISCOMPLICATEDANDTHEREISVARIATIONINTHICKNESS,THENTHEEQUILIBRIUMEQUATIONSCHANGESTONONLINEARANDHASNOANALYTICALSOLUTIONTHUS,ITCANBESOLVEDONLYBYFINITEDIFFERENCEORNUMERICALSOLUTIONS2,5OFCOURSE,ASTHEPOLYMERISAVISCOELASTICFLUID,ITISBESTTOSOLVETHEFLOWPROBLEMBYUSINGVISCOELASTICITYEQUATIONSIN1998,GOYALETALUSEDTHEWHITEMETZNERVISCOELASTICITYMODELTOSIMULATETHEDISKMOULDFLOWMODELFORCENTRALPOURINGMETZNER,USINGAFINITEDIFFERENCEMETHODTOSOLVETHEGOVERNINGEQUATION,FOULDTHEVISCOELASTICITYEFFECTWOULDNOTCHANGETHEDISTRIBUTIONOFSPEEDANDTEMPERATUREHOWEVER,ITAFFECTSTHESTRESSFIELDVERYMUCHIFITISAPUREVISCOELASTIC298JCLINFLOWMODEL,THEPOPULARGNFMODELISGENERALLYUSEDTOPERFORMNUMERICALSIMULATIONCURRENTLY,FINITEELEMENTMETHODSAREMOSTLYUSEDFORTHESOLUTIONOFMOULDFLOWPROBLEMSOTHERMETHODSAREPUREVISCOELASTICMODELS,SUCHASCFOLWANDMOLDFLOWSOFTWAREWEUSEDTHISMETHODASWELLSOMESOFTWAREEMPLOYSTHEVISCOELASTICWHITEMETZNERMODEL,BUTITISLIMITEDTO2DMOULDFLOWANALYSISSIMPLEMOULDFLOWANALYSISISLIMITEDBYCPUTIMEFORTHECOMPLICATEDMOULDSHAPES,PAPTHANASIONETALUSEDUCMFLUIDFORFILLINGANALYSIS,USINGAFINITEDIFFERENCEMETHODANDBFCCCOORDINATIONSYSTEMAPPLICATIONFORTHESOLUTIONOFTHEMORECOMPLICATEDMOULDSHAPEANDFILLINGPROBLEM,BUTITWASNOTCOMMERCIALISED6MANYFACTORSAFFECTPLASTICMATERIALINJECTIONTHEFILLINGSPEED,INJECTIONPRESSUREANDMOLTENTEMPERATURE,HOLDINGPRESSURE712,COOLINGTUBE13,14ANDINJECTIONGATEAFFECTTHEACCURACYOFTHEPLASTICPRODUCT,BECAUSE,WHENTHEINJECTIONPROCESSINGISCOMPLETED,THEFLOWOFMATERIALINTHEMOULDCAVITYRESULTSINUNEVENTEMPERATUREANDPRESSURE,ANDINDUCESRESIDUALSTRESSANDDEFORMATIONOFTHEWORKPIECEAFTERCOOLINGITISDIFFICULTTODECIDEONTHEMOULDPARTSURFACEANDGATEPOSITIONSGENERALLY,THEMOULDPARTSURFACEISLOCATEDATTHEWIDESTPLANEOFTHEMOULDSEARCHINGFORTHEOPTIMALGATEPOSITIONDEPENDSONEXPERIENCEMINIMALMODIFICATIONTOTHEMOULDISREQUIREDIFYOUARELUCKYHOWEVER,THETIMEANDCOSTREQUIREDFORTHEMODIFICATIONOFMOSTINJECTIONMOULDSEXCEEDSTHEORIGINALCOST,IFTHECHOICEOFTHEPARTLINEISPOORFORTHEMOULDPARTSURFACE,MANYWORKERSUSEDVARIOUSMETHODSTOSEARCHFORTHEOPTIMALMOULDPARTLINE,SUCHASGEOMETRICSHAPEANDFEATUREBASEDDESIGN1517SOMEWORKERSUSEDFINITEELEMENTMETHODSANDABDUCTIVENETWORKSTOLOOKFORTHEOPTIMALGATEDESIGNFORADIECASTINGMOULD18THISSTUDYUSEDANABDUCTIVENETWORKTOESTABLISHTHEPARAMETERRELATIONSHIPOFTHEMOULDPARTLINE,ANDUSEDTHISFORMULAFORSEARCHINGFOR22POINTSONTHEINJECTIONMOULDPARTLINETOSERVEASTHELOCATIONFORANINJECTIONGATEABDUCTIVENETWORKSAREUSEDTOMATCHINJECTIONPRESSUREANDPRESSUREHOLDINGTIMETOPERFORMINJECTIONFORMATIONANALYSIS,ANDTOESTABLISHARELATIONSHIPBETWEENTHESEPARAMETERS,ANDTHEOUTPUTRESULTOFTHEINJECTIONPROCESSITHASBEENSHOWNTHATPREDICTIONACCURACYINABDUCTIVENETWORKSISMUCHHIGHERTHANTHATINOTHERNETWORKS19ABDUCTIVENETWORKSBASEDONTHEABDUCTIVEMODELLINGTECHNIQUEAREABLETOREPRESENTCOMPLEXANDUNCERTAINRELATIONSHIPSBETWEENMOULDFLOWANALYSISRESULTSANDINJECTIONPARAMETERSITHASBEEENSHOWNTHATTHEINJECTIONSTRAINANDINJECTIONSTRESSINAPRODUCTCANBEPREDICTED,WITHREASONABLEACCURACY,BASEDONTHEDEVELOPEDNETWORKSTHEABDUCTIVENETWORKHASBEENCONSTRUCTEDONCETHERELATIONSHIPSOFGATELOCATIONTHATAREINPUTANDSIMULATEDHAVEBEENDETERMINEDANAPPROPRIATEOPTIMISATIONALGORITHMWITHAPERFORMANCEINDEXISTHENUSEDTOSEARCHFORTHEOPTIMALLOCATIONPARAMETERSINTHISPAPER,ANOPTIMISATIONMETHODFORSIMULATEDANNEALING20ISPRESENTEDTHESIMULATEDANNEALINGALGORITHMISASIMULATIONOFTHEANNEALINGPROCESSFORMINIMISINGTHEPERFORMANCEINDEXITHASBEENSUCCESSFULLYAPPLIEDTOFILTERINGINIMAGEPROCESSING21,VLSILAYOUTGENERATION22,DISCRETETOLERANCEDESIGN23,WIREELECTRICALDISCHARGEMACHINING24,DEEPDRAWCLEARANCE25,ANDCASTINGDIERUNNERDESIGN26,ETCITPROVIDESANEXPERIMENTALFOUNDATIONBASEDONTHEORYFORTHEDEVELOPMENTANDAPPLICATIONOFTHETECHNOLOGIES2MOULDFLOWTHEORYTHEMOULDFLOWANALYSISINCLUDEFOURMAJORPARTS1FILLINGSTAGE2PRESSUREHOLDINGSTAGE3COOLINGANDSOLIDIFICATIONSTAGE4SHRINKAGEANDWARP,IESTRESSRESIDUESTAGETHUS,THEMAJORMOULDFLOWEQUATIONSAREDIVIDEDINTOFOURGROUPSINTHEFILLINGSTAGE,THEMOULDCAVITYISFILLEDWITHMOLTENPLASTICFLUIDATHIGHPRESSSURETHUS,THEGOVERNINGEQUATIONSINCLUDE1CONTINUITYEQUATIONTHEPLASTICDEFORMATIONORSHAPECHANGEACCOMPANYTHEFLOWDURINGTHEFILLINGPROCESSMASSCONSERVATIONRTV01RPLASTICDENSITYVVECTORVELOCITY2MOMENTUMEQUATIONNEWTONSSECONDLAWISUSEDTODERIVETHEMOMENTUMACCELERATIONCONDITIONORFORCEBALANCEGENERATEDBYPLASTICFLOWRFVTVVGVPTRF2PFLOWPRESSUREFBODYFORCETSTRESSTENSOR3ENERGYEQUATIONTHEENERGYCONSERVATIONOFSYSTEMANDLAWSOFCONSERVATIONOFFLOWMATERIAL,IFTHEFLUIDISINCOMPRESSIBLERCPFTTVTGQTV3TTEMPERATURECPSPECIFICHEATOFCONSTANTPRESSUREQHEATFLUX4RHEOLOGYEQUATIONTFNG,T,P,4GVVT5VDEFORMTENSORVTTRANSPORTVECTORHOLDINGPRESSUREANALYSISTHEHOLDINGPRESSUREPROCESSISTOMAINTAINTHEPRESSUREAFTERTHEMOULDCAVITYISFILLEDINORDERTOINJECTMOREPLASTIC,TOCOMPENSATEFORTHESHRINKAGEINCOOLINGRV1TPX1FT11X1T21X2T31X3G6RV2TPX2FT12X1T22X2T32X3G7RV3TPX1FT13X1T23X2T33X3G8OPTIMUMGATEDESIGNOFFREEFORMINJECTIONMOULD299COOLINGANALYSISTHEANALYSISOFTHECOOLINGPROCESSCONSIDERSTHERELATIONSHIPOFTHEPLASTICFLOWDISTRIBUTIONANDHEATTRANSMISSIONTHEHOMOGENOUSMOULDTEMPERATUREANDTHESEQUENCEOFFILLINGWILLBEAFFECTEDBYTHESHRINKAGEOFTHEPRODUCTFORMEDIFTHETEMPERATUREISDISTRIBUTEDNONUNIFORMLY,ITTENDSTOPRODUCEWARPTHISISMAINLYDUETOHEATTRANSFERANDCRYSTALLISATIONHEATOFTHEPLASTICRCPTTKF2TX212TX222TX33GRCPRDH9RCRYSTALLISATIONRATEDHCRYSTALLISATIONHEAT3ABDUCTIVENETWORKSYNTHESISANDEVALUATIONMILLER22OBSERVEDTHATHUMANBEHAVIOURLIMITSTHEAMOUNTOFINFORMATIONCONSIDEREDATATIMETHEINPUTDATAARESUMMARISEDANDTHENTHESUMMARISEDINFORMATIONISPASSEDTOAHIGHERREASONINGLEVELINANABDUCTIVENETWORK,ACOMPLEXSYSTEMCANBEDECOMPOSEDINTOSMALLER,SIMPLERSUBSYSTEMSGROUPEDINTOSEVERALLAYERSUSINGPOLYNOMIALFUNCTIONNODESTHESENODESEVALUATETHELIMITEDNUMBEROFINPUTSBYAPOLYNOMIALFUNCTIONANDGENERATEANOUTPUTTOSERVEASANINPUTTOSUBSEQUENTNODESOFTHENEXTLAYERTHESEPOLYNOMIALFUNCTIONALNODESARESPECIFIEDASFOLLOWS1NORMALISERANORMALISERTRANSFORMSTHEORIGINALINPUTVARIABLESINTOARELATIVELYCOMMONREGIONA1Q0Q1X110WHEREA1ISTHENORMALISEDINPUT,Q0,Q1ARETHECOEFFICIENTSOFTHENORMALISER,ANDX1ISTHEORIGINALINPUT2WHITENODEAWHITENODECONSISTSOFLINEARWEIGHTEDSUMSOFALLTHEOUTPUTSOFTHEPREVIOUSLAYERB1R0R1Y1R2Y2R3Y3RNYN11WHEREY1,Y2,Y3,YNARETHEINPUTOFTHEPREVIOUSLAYER,B1ISTHEOUTPUTOFTHENODE,ANDTHER0,R1,R2,R3,RNARETHECOEFFICIENTSOFTHETRIPLENODE3SINGLE,DOUBLE,ANDTRIPLENODESTHESENAMESAREBASEDONTHENUMBEROFINPUTVARIABLESTHEALGEBRAICFORMOFEACHOFTHESENODESISSHOWNINTHEFOLLOWINGSINGLEC1S0S1Z1S2Z21S3Z3112DOUBLED1T0T1N1T2N21T3N31T4N2T5N22T6N32T7N1N213TRIPLEE1U0U1O1U2O21U3O31U4O2U5O22U6O32U7O3U8O23U9O33U10O1O2U11O2O3U12O1O3U13O1O2O314WHEREZ1,Z2,Z3,ZN,N1,N2,N3,NN,O1,O2,O3,ONARETHEINPUTOFTHEPREVIOUSLAYER,C1,D1,ANDE1ARETHEOUTPUTOFTHENODE,ANDTHES0,S1,S2,S3,SN,T0,S1,T2,T3,TN,U0,U1,U2,U3,UNARETHECOEFFICIENTSOFTHESINGLE,DOUBLE,ANDTRIPLENODESTHESENODESARETHIRDDEGREEPOLYNOMIALEQANDDOUBLESANDTRIPLESHAVECROSSTERMS,ALLOWINGINTERACTIONAMONGTHENODEINPUTVARIABLES4UNITISERONTHEOTHERHAND,AUNITISERCONVERTSTHEOUTPUTTOAREALOUTPUTF1V0V1I115WHEREI1ISTHEOUTPUTOFTHENETWORK,F1ISTHEREALOUTPUT,ANDV0ANDV1ARETHECOEFFICIENTSOFTHEUNITISER4PARTSURFACEMODELTHISSTUDYUSESANACTUALINDUSTRIALPRODUCTASASAMPLE,FIG1THEMOULDPARTSURFACEISLOCATEDATTHEMAXIMUMPROJECTIONAREAASSHOWNINFIG1,THEBOTTOMISTHEWIDESTPLANEANDISCHOSENASTHEMOULDPARTSURFACEHOWEVER,MOSTIMPORTANTISTHESEARCHINGOFGATEPOSITIONONTHEPARTSURFACETHISSTUDYESTABLISHESTHEPARAMETEREQUATIONBYUSINGANABDUCTIVENEURONNETWORK,INORDERTOESTABLISHTHESIMULATEDANNEALINGMETHODSATOFINDTHEOPTIMALGATEPATHPOSITIONTHEPARAMETEREQUATIONOFAPARTSURFACEISEXPRESSEDBYFYXFIRST,USEACMMSYSTEMTOMEASURETHEXYZCOORDINATEVALUESINTHISSTUDYZ0OF22POINTSONTHEMOULDPARTLINEONTHEMOULDPARTSURFACEASILLUSTRATEDINTABLE1,ANDTHEGATEPOSITIONISCOMPLETELYONTHECURVEINTHISSPACEPRIORTODEVELOPINGASPACECURVEMODEL,ADATABASEHASTOBETRAINED,ANDAGOODRELATIONSHIPMSUTEXISTBETWEENTHECONTROLPOINTANDABDUCTIVENETWORKSYSTEMACORRECTANDFIG1INJECTIONMOULDPRODUCT300JCLINTABLE1X,YCOORDINATESETNUMBERXCOORDINATEYCOORDINATE1002462163433332835452920457310566934097113323581298394913855571014127341113699671212961191310002103149332316158642528167982739177872831187802929197833034207603130217073215226113249PRECISECURVEEQISHELPFULFORFINDINGTHEOPTIMALGATELOCATIONTOBUILDACOMPLETEABDUCTIVENETWORK,THEFIRSTREQUIREMENTISTOTRAINTHEDATABASETHEINFORMATIONGIVENBYTHEINPUTANDOUTPUTPARAMETERSMUSTBESUFFICIENTAPREDICTEDSQUAREERRORPSECRITERIONISTHENUSEDTODETERMINEAUTOMATICALLYANOPTIMALSTRUCTURE23THEPSECRITERIONISUSEDTOSELECTTHELEASTCOMPLEXBUTSTILLACCURATENETWORKTHEPSEISCOMPOSEDOFTWOTERMSPSEFSEKP16WHEREFSEISTHEAVERAGESQUAREERROROFTHENETWORKFORFITTINGTHETRAININGDATAANDKPISTHECOMPLEXPENALTYOFTHENETWORK,SHOWNBYTHEFOLLOWINGEQUATIONKPCPM2S2PKN17WHERECPMISTHECOMPLEXPENALTYMULTIPLIER,KPISACOEFFICIENTOFTHENETWORKNISTHENUMBEROFTRAININGDATATOBEUSEDANDS2PISAPRIORESTIMATEOFTHEMODELERRORVARIANCEBASEDONTHEDEVELOPMENTOFTHEDATABASEANDTHEPREDICTIONOFTHEACCURACYOFTHEPARTSURFACE,ATHREELAYERABDUCTIVENETWORK,WHICHCOMPRISEDDESIGNFACTORSINPUTVARIOUSYCOORDINATEANDOUTPUTFACTORSXCOORDINATEISSYNTHESISEDAUTOMATICALLYITISCAPABLEOFPREDICTINGACCURATELYTHESPACECURVEATANYPOINTUNDERVARIOUSCONTROLPARAMETERSALLPOLYNOMIALEQUATIONSUSEDINTHISNETWORKARELISTEDINAPPENDIXAPSE58103TABLE2COMPARESTHEERRORPREDICTEDBYTHEABDUCTIVEMODELANDCMMMEASUREMENTDATATHEMEASUREMENTDAAISEXCLUDEDFROMTHE22SETSOFCMMMEASUREMENTDATAFORESTABLISHINGTHEMODELTHISSETOFDATAISUSEDTOTESTTHEAPPROPRIATENESSOFTHEMODELESTABLISHEDABOVEWECANSEEFROMTABLE2THATTHEERRORISAPPROXIMATELY213,WHICHSHOWSTHATTHEMODELISSUITABLEFORTHISSPACECURVETABLE2CMMSCOORDINATEANDNEURALNETWORKPREDICTCOMPAREDITISNOTINCLUDEDINANYORIGINAL22SETSDATABASEITEMSCMMSNEURALNETWORKERRORVALUESCOORDINATEPREDICTCMMSPREDICT/COORDINATECMMSCOORDINATE1125,1601101,1602135CREATETHEINJECTIONMOULDMODELSIMILARLY,THERELATIONSHIPISESTABLISHEDBETWEENINPUTPARAMETERSGATELOCATIONANDGATESIZEANDTHEOUTPUTPARAMETERDEFORMATIONDURINGTHEINJECTIONPROCESSTOBUILDACOMPLETEABDUCTIVENETWORK,THEFIRSTREQUIREMENTISTOTRAINTHEDATABASETHEINFORMATIONGIVENBYTHEINPUTANDTHEOUTPUTDATAMUSTBESUFFICIENTTHUS,THETRAININGFACTORGATELOCATIONFORABDUCTIVENETWORKTRAININGSHOULDBESATISFACTORYFORMAKINGDEFECTFREEPRODUCTSFIGURE2SHOWSTHESIMULATIONOFFEMMOULDFLOWTABLE3SHOWSTHEPOSITIONOFTHEGATEANDTHEMAXIMUMDEFORMATIONOFTHEPRODUCTOBTAINEDFROMMOULDFLOWANALYSISBASEDONTHEDEVELOPMENTOFTHEINJECTIONMOULDMODEL,THREELAYERABDUCTIVENETWORKS,WHICHARECOMPRISEDOFINJECTIONMOULDCONDITIONSANDTHEINJECTIONRESULTSDEFORMATION,ARESYNTHESISEDAUTOMATICALLYTHEYARECAPABLEOFPREDICTINGACCURATELYTHEPRODUCTSTRAINTHERESULTOFINJECTIONMOULDEDPRODUCTUNDERVARIOUSCONTROLPARAMETERSALLPOLYNOMIALEQUATIONSUSEDINTHISNETWORKARELISTEDINAPPENDIXBPSE23105TABLE4COMPARESTHEERRORPREDICTEDBYTHEABDUCTIVEMODELANDTHESIMULATIONCASETHESIMULATIONCASEISEXCLUDEDFROMTHE22SETSOFSIMULATIONCASESFORESTABLISHINGTHEMODELTHISSETOFDATAISUSEDTOTESTTHEAPPROPRIATENESSOFTHEMODELESTABLISHEDABOVEWECANSEEFROMTABLE4THATTHEERRORISFIG2THEDEFORMATIONOFFEMMOULDFLOWOPTIMUMGATEDESIGNOFFREEFORMINJECTIONMOULD301TABLE3GATELOCATIONANDTHEMAXIMUMSTRAINRELATIONSHIPSETNUMBERXCOORDINATEYCOORDINATEGATEWIDTHGATELENGTHPRODUCEMAXSTRAIN100246052511475034821634330715303153332835087519125027104529204105229502858573105605251147503017693409071530526711332350875191250236981298394105229502517913855570525114750278810141273407153027731113699670875191250298812129611910522950299713100021030525114750257614933231607153026241586425280875191250254216798273910522950249517787283105251147502503187802929071530245619783303408751912502596207603130105229502457217073215052511475024992261132490715302511TABLE4MOULDFLOWSIMULATEDANDNEURALNETWORKPREDICTCOMPAREDITISNOTINCLUDEDINANYORIGINAL22SETDATABASEITEMSFEMMOULDFLOWNEURALNETWORKSIMULATIONPREDICTXCOORDINATE11011101YCOORDINATE160160GATEWIDTH1818GATEHEIGHT0909PRODUCEMAXDEFORMATION0317803325ERRORVALUES462FEMPREDICT/FEMAPPROXIMATELY462,WHICHSHOWSTHATTHEMODELISSUITABLEFORTHISMODELREQUIREMENT6SIMULATIONANNEALINGTHEORYIN1983,ATHEORYTHATWASCAPABLEOFSOLVINGTHEGLOBALOPTIMISATIONPROBLEMWASDEVELOPEDFORTHEOPTIMISEDPROBLEMTHECONCEPTWASAPOWERFULOPTIMISATIONALGORITHMBASEDONTHEANNEALINGOFASOLIDWHICHSOLVEDTHECOMBINATORIALOPTIMISATIONPROBLEMOFMULTIPLEVARIABLESWHENTHETEMPERATUREISTANDENERGYE,THETHERMALEQUILIBRIUMOFTHESYSTEMISABOLTZMANDISTRIBUTIONPR1ZTEXPSEKBTD18ZTNORMALISATIONFACTORKBBOLTZMANCONSTANTEXPE/KBTBOLTZMANFACTORMETROPOLIS24PROPOSEDACRITERIONFORSIMULATINGTHECOOLINGOFASOLIDTOANEWSTATEOFENERGYBALANCETHEBASICCRITERIONUSEDBYMETROPOLISISANOPTIMISATIONALGORITHMCALLED“SIMULATEDANNEALING”THEALGORITHMWASDEVELOPEDBYKIRKPATRICKETAL20INTHISPAPER,THESIMULATIONANNEALINGALGORITHMISUSEDTOSEARCHFORTHEOPTIMALCONTROLPARAMETERSFORGATELOCATIONFIGURE3SHOWSTHEFLOWCHARTOFTHESIMULATEDANNEALINGSEARCHFIRST,THEALGORITHMISGIVENANINITIALTEMPERATURETSANDAFINALTEMPERATURETE,ANDASETOFINITIALPROCESSVECTORSOXTHEOBJECTIVEFUNCTIONOBJISDEFINED,BASEDONTHEINJECTIONPARAMETERPERFORMANCEINDEXTHEOBJECTIVEFUNCTIONCANBERECALCULATEDFORALLTHEDIFFERENTPERTURBEDCOMPENSATIONPARAMETERSIFTHENEWOBJECTIVEFUNCTIONBECOMESSMALLER,THEPETURBEDPROCESSPARAMETERSAREACCEPTEDASTHENEWPROCESSPARAMETERSANDTHETEMPERATUREDROPSALITTLEINSCALETHATISTI1TICT19WHEREIISTHEINDEXFORTHETEMPERATUREDECREMENTANDTHECTISTHEDECAYRATIOFORTHETEMPERATURECT,1HOWEVER,IFTHEOBJECTIVEFUNCTIONBECOMESLARGER,THEPROBABILITYOFACCEPTANCEOFTHEPERTURBEDPROCESSPARAMETERSISGIVENASPROBJEXPFDOBJKBTG20WHEREKBISTHEBOLTZMANCONSTANTANDDOBJISTHEDIFFERENTINTHEOBJECTIVEFUNCTIONTHEPROCEDUREISREPEATEDUNTILTHETEMPERATURETIAPPROACHESZEROITSHOWSTHEENERGYDROPPINGTOTHELOWESTSTATEONCETHEMODELOFTHERELATIONSHIPAMONGTHEFUNCTIONSOFTHEGATELOCATION,THEINPUTPARAMETERSANDOUTPUTPARAMETERSAREESTABLISHED,THISMODELCANBEUSEDTOFINDTHEOPTIMALPARAMETERFORTHEGATELOCATIONTHEOPTIMALPARAMETERFORTHEPROCESSCANBEOBTAINEDBYUSINGTHEOBJECTIVEFUNCTIONTOSERVE302JCLINFIG3FLOWCHARTOFTHESIMULATEDANNEALINGSEARCHINGASASTARTINGPOINTTHEOBJECTIVEFUNCTIONOBJISFORMULATEDASFOLLOWSOBJW1XCOORDINATEW2YCOORDINATE21W3GATEWIDESIZEW3GATEHEIGHTSIZEWHEREW1,W2,ANDW3ARETHEWEIGHTFUNCTIONSTHECONTROLPARAMETRICOFTHEX,YLOCATIONSHOULDCOMPLYWITHTHEPARTSURFACEPARAMETEREQUATIONTHATMEANSTHEBASICCONDITIONOFOPTIMISATIONSHOULDFALLWITHINACERTAINRANGE1THEXCOORDINATEVALUEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMXCOORDINATEVALUE,ANDSMALLERTHANTHEMAXIMUMXCOORDINATEVALUE2THEYCOORDINATEVALUEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMYCOORDINATEVALUE,ANDSMALLERTHANTHEMAXIMUMXCOORDINATEVALUETHEX,YCOORDINATEDEPENDSONTHEAPPENDIXANEURALNETWORKEQUATION3THEGATEWIDESIZEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMSIZEOFGATEWIDTH,ANDSMALLERTHANTHEMAXIMUMGATEWIDTHSIZE4THEGATEHEIGHTSIZEOBTAINEDFROMOPTIMISATIONSHOULDBELARGERTHANTHEMINIMUMSIZEOFGATEHEIGHT,ANDSMALLERTHANTHEMAXIMUMGATEHEIGHTSIZETHEINEQUALITIESAREGIVENASFOLLOWSTHESMALLESTXCOORDINATEVALUE,XCOORDINATEVALUE,THELARGESTXCOORDINATEVALUE22THESMALLESTYCOORDINATEVALUE,YCOORDINATEVALUE,THELARGESTYCOORDINATEVALUE23THESMALLESTGATEWIDTHSIZE,GATEWIDTHSIZE,THELARGESTWIDTHGATESIZE24THESMALLESTGATEHEIGHTSIZE,GATEHEIGHTSIZE,THELARGESTHEIGHTGATESIZE25THEUPPERBOUNDCONDITIONSSHOULDBEKEPTT
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。