论文.doc

收音机中框零件注射模设计【13张CAD图纸和说明书】

收藏

压缩包内文档预览:(预览前20页/共47页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10112835    类型:共享资源    大小:4.01MB    格式:RAR    上传时间:2018-05-20 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
收音机 零件 注射 设计 13 cad 图纸 以及 说明书 仿单
资源描述:

摘要

    本次设计主要讲述收音机中框零件塑件进行模具设计的毕业设计。论文综述了国内模具设计的研究进展及研究现状、分析课题的研究背景、阐述课题研究的意义和内容。

    首先分析塑件工艺结构,了解塑件的技术要求,测量塑件尺寸,绘制塑件图,选用ABS材料,设计出一套一模一腔的塑料模具。同时,详细叙述了设计过程如何分析塑件制品的结构、性能,确定成型方案,成型部分的设计,导向机构、浇注系统、顶出机构、排气、冷却系统等,接着分析了如何选择模具钢种、模具标准件。

    本套模具设计结合了机械制图,CAD,公差配合,模具设计,机械制造技术模具工艺学,UG等专业课程的知识,讲述了塑料模具结构设计的步骤,详细介绍了一套塑料模具设计的全部过程。


关键词:型腔;型芯;模具设计



Design of injection mold frame radio parts 

Abstract

    This instruction booklet main narration the radio frame models the graduation project which carries on the mold to design.The paper summarizes the analysis of the status quo, and research progress of study on the hydraulic technology at home and abroad and the significance of research background, describes the research topics.

    First analyzes models the craft structure, understood models the specification, the survey models a size, the plan models a chart, selects the ABS material, designs set of the one plastic mold with one mold holes. At the same time, how in detail narrated the design process to analyze models a product the structure, the performance, determined took shape the plan, took shape the partial designs, the guidance organization, pours the system, goes against the organization, the exhaust, the cooling system and so on, how then analyzed has chosen the mold aluminum, the mold standard.

    This set molding tool design combined the machine graphics, CAD, the business trip match, molding tool design, machine manufacturing the technique molding tool craft learn, the UG waits professional lesson, relating the plastics molding tool structure a design of step, detailedintroduced a set of plastics molding tool to design of all processes.


Key Words: Cavity core;mold;design






目  录

1绪论 1

  1.1模具介绍 1

  1.2模具在加工工业中的地位 1

  1.3模具的发展趋势 1

  1.4设计在学习模具专业中的作用 2

2该塑件材料分析和工艺性分析 3

  2.1材料分析 3

  2.2工艺分析 3

3拟定的成型工艺 4

  3.1塑件的成型方法 4

  3.2塑件的成型参数 4

  3.3确定型腔数目 4

    3.3.1计算制品的体积和重量 4

    3.3.2确定型腔数目 4

4浇注系统的设计 6

  4.1塑件在模具中的位置 6

    4.1.1型腔的布置 6

    4.1.2分型面的选择 6

  4.2确定浇口形式及位置 7

  4.3主流道的设计 8

  4.4分流道设计 8

  4.5冷料穴设计 9

5成型零部件的设计 10

  5.1成型零部件的结构设计 10

  5.2成型零部件工作尺寸计算 11

  5.3成型零部件的强度与刚度计算 12

6结构零部件的设计 14

  6.1选用注射机及模架 14

    6.1.1初选注射机 14

    6.2.2选标准模架 15

  6.2定模板与动模板的设计 16

  6.3合模导向机构的设计 16

7推出机构的设计 18

  7.1推件力的计算 18

  7.2确定顶出方式及推杆位置 18

8侧向分型与抽芯机构设计 20

  8.1外侧抽芯机构设计 20

    8.1.1计算斜导柱倾斜角 21

    8.1.2计算斜导柱直径D 21

    8.2.3计算斜导柱长度 21

  8.2内侧抽芯机构设计 21

    8.2.1计算斜导柱倾斜角 21

    8.2.2计算斜导柱直径 22

    8.3.3计算斜导柱长度 22

9温度调节系统设计 23

10排气系统设计 24

  10.1排气不良的危害性 24

  10.2排气方法 24

  10.3排气槽结构 24

11产品及模具的三维造型 25

12注塑机参数校核 29

  12.1最大注射量、锁模力、注射压力、模具厚度的校核 29

  12.2开模行程的校核 29

  12.3模具与注射机安装相关部分尺寸校核 29

13绘制图纸并编写技术文件 30

  13.1绘制各非标准零件图纸 30

  13.2编写加工工艺和装配技术 31

    13.2.2装配要求 32

    13.2.3综合要求 32

设计总结 34

致谢 35

参考文献 36

毕业设计(论文)知识产权声明 37

毕业设计(论文)独创性声明 38


1  绪论

1.1模具介绍

模具的作用是控制和限制材料(固态或液态)的流动,使之形成所需要的形体。用模具制造零件以其效率高,产品质量好,材料消耗低,生产成本低而广泛应用于制造业中。模具主要类型有:冲模、锻摸、塑料模、压铸模、粉末冶金模、玻璃模、橡胶模、陶瓷模等。除部分冲模以外的上述各种模具都属于腔型模,因为它们一般都是依靠三维的模具型腔是材料成型。其中塑料模约占模具总数的35%,分额最大而且有继续上升的趋势。塑料模主要包括压塑模,挤塑模,注射模,此外还有挤出成型模,泡沫塑料的发泡成型模,低发泡注射成型模,吹塑模等。

1.2模具在加工工业中的地位

模具是工业生产中的重要工艺装备,模具工业是国民经济各部门发展的重要基础之一,是国际上公认的关键工业。模具生产技术水平的高低是衡量一个国家产品制造水平高低的重要标志。它在很大程度上决定着产品的质量,效益和新产品的开发能力。模具工业既是高新技术产业的一个组成部分,又是高新技术产业化的重要领域。模具在机械,电子,轻工,汽车,纺织,航空,航天等工业领域里,日益成为使用最广泛的主要工艺装备,它承担了这些工业领域中60%~90%的产品的零件,组件和部件的生产加工。振兴和发展我国的模具工业,正日益受到人们的关注。


内容简介:
AbstractnoUniwandstreetsandprocessK1.lastprocessasneofwengineering”).turesomeUnihasplasticshundredshousehold-electric,URL:0924-0136/$doi:10.1016/j.jmatprotec.2005.04.006Journal of Materials Processing Technology 175 (2006) 1519An example of simulation tools use for large injection moulds design:The CONTENURTM2400 l solid waste containerJ. Aisaa, C. Javierrea, J.A. De la SernabaT.I.I.P., C.S.I.C. Associated Unit, Department of Mechanical Engineering, University of Zaragoza, SpainbCONTENUR ESPANA, S.L., Polgono Industrial Los Angeles, Getafe, Madrid, SpainLarge containers with volumes above 1100 l are usually produced using procedures such as rotomoulding process. These techniques havepart weight or dimensional limits. T.I.I.P., injection moulding plastic group of the Department of Mechanical Engineering of the Zaragozaversity, developed with CONTENURTMa new product under European norms for solid waste containers up to 2000 l volume; the resultas a new main body up to 60 kg weight in one part. The design process combined several CAE tools (aesthetical design, mechanical designrheological simulation) and, in last June, showed final result and passed different tests. Nowadays, more than 5000 samples are on thewithout basic modifications in the mould (more than 100 tonnes weight). The paper focuses on the methodology used to integrate toolprocess design with product definition (i.e. injection pressure and clamp force versus thickness and part shape). Some parameters aboutcontrol in this particular mould (injection rate, temperature, viscosity, gate location, .) are detailed.2005 Elsevier B.V. All rights reserved.eywords: CAE design; Container; Injection mouldingIntroductionCAE tools have constituted an authentic revolution in theyears within injection of thermoplastics. The sequentialuntil the final solution (including several setups suchdevelopment, test of prototypes, modification of figures,w test, .) has been replaced by a faster one consistinga procedure with the designer, transformer and final clientorking together on the same computer files (“concurrentTherefore, the timing for mould manufac-and completion has been reduced enormously; however,interesting advices about CAE use are described in 1.The Workshop of Injection of the Plastics Industry of theversity of Zaragoza (T.I.I.P.), C.S.I.C. Associated Unit,been working with CAE tools on injection of thermo-for more than 15 years, with enormous advantage forof projects made in different sectors (automotive,packaging, toys, etc.). T.I.I.P. activitiesCorresponding author.E-mail address: tiipunizar.es (J. Aisa).includedtion,diftheufcollaboratedAssociationtryinjectiontechnologicalorishresearchcascadetechniques2.the see front matter 2005 Elsevier B.V. All rights reserved.several research projects (rheological characteriza-semiautomatic mould design, .) working together withferent European companies.Nevertheless, this group has always been conscious ofnecessity to arrange simulation with procedure of man-acture next to the machine, of such a form that has beenand directed by the constitution of the Researchof the Workshop of Injection of the Plastic Indus-(a.i.T.I.I.P.) foundation, which provides services to thecompanies without a profit spirit (Fig. 1). Thiscenter has been supported by various nationalganizations such as the Aragons Government and Span-Department of Industry through different programs andlines (new processes like gas-assisted techniques orinjection moulding, new designs, process-measuringusing pressure and temperature devices .).The CONTENUR ProjectWhen, in 1999, the first Spanish company involved inmanufacture of containers for the collection of urban16 ProcessingsolidTpiecestestingofwithplasticofalltheplesbigmouldmakandtoandminimummaterial),J. Aisa et al. / Journal of MaterialsFig. 1. a.i.T.I.I.P. injection moulding area, general view.remainders (CONTENUR SPAIN, S.L.) went to the.I.I.P.a.i.T.I.I.P. Group to work jointly on the design ofof great size in injection, then arrived the moment forthe real possibilities of these programs in this field.The main objective of the project was the fast manufacturecontainers of great capacity (2400 l and more) to competemarket products with welded metallic plate solutions orones made by rotational moulding with the inclusionexpensive reinforcement structures. Obviously, betweenthe pieces that constituted the set, the main challenge wasmanufacture of a single part bucket.The literature shows several part and mould design exam-and failure advices 2,3, but it is not possible to findplastic parts up to 40 kg weight and a mistake in thissize will have no easy solution (tool transport to moulders manufacturing plant will be too expensive, and trialerror method is not available).For the design of this element, the following aspects hadbe considered:basic dimensions agreed with the European Norm EN12574 4;unloading resistance (discharge sides) (Fig. 2);high impact resistance for functional conditions and loca-tion (parking areas, for example);easily cleaning surfaces;friendly aspect, aesthetical design;minimum cost (not only for processing and assembly butalso for on-street maintenance);restriction of the clamping force imposed by the installedpress machine (big special machines with limited clampingrange between 5000 and 10,000 tonnes);prepared for labelling, that is to say, with visible free andflat spaces;material restrictions: same materials used for other CON-TENUR designs.Special mention requires two limitations: minimum costmaximum clamping force under mentioned limits. For acost, thickness is fundamental (by the cost of rawinasmuch as the time of manufacture; therefore,Fig.model,thethejectedstronglyaforcenottechniques(a)(b)TResultsMain(mm)/weightTechnology 175 (2006) 15192. Boundary conditions for unloading operation, nonlinear materialfinite element model.cost of the machine derived approximately depends onsquare of the thickness 5.On the other hand, to reduce the closing force, the pro-area of the piece and the distribution of pressures arerelated with part thickness (narrow sections causedhigh injection pressure, which could as well suppose a highof closing).The methodology applied, developed by Castany et al.,only for injection moulding but also for other similar68, is as given below:Determination of the feasibility of the product: clampingforce evaluation and thickness part on an agreed basicgeometry to adjust dimensions with the European norm.Only general design lines, and not functional details,were included in this step. Some basic results are shownin Table 1. These analyses were made with basic param-eters for generic material family, high-density polyethy-lene (Table 2). For advanced steps, calculations weremade using several temperature conditions.Material selection, combining melt flow index (MFI) andmechanical behaviour, and injection point locations weresimulated, without even knowing the final geometry ofthe component. Best results were found for several injec-tion points arranged around the bottom area in the mainable 1for simple plastic model, first analysis using simulation toolsbody thickness(kg)Maximum injectionpressure (MPa)Required clampingforce (kN)6/52 96 166,0007/60 71 122,0008/68 55 94,0009/76 44 74,00010/84 35 59,000ProcessingTComputingMeltInjectionMouldFig.ments.(c)(d)J. Aisa et al. / Journal of Materialsable 2parameters for basic simulationstemperature (C) 240time at constant ram speedIn seconds 20In percent 50temperature (C) 403. Basic line, Pro-Engineer software, before final moulding arrange-body of the container. This criteria was also imposed bymould structure and part shape.Analysis of the body form and thickness of the partcomparing constructive alternatives: its sidewall shapes,metallic elements of reinforcement and, if necessary,inclusion of the tubes injected with gas-assisted tech-niques to increase inertia of the sections, etc., were con-sidered.Obviously, mould dimensions and the presence of under-cuts supposed a problem added for the design of pieceand mould. In this way, semicircular shape of the borderTBasicHeightWLength(e)thegeometrysettlingsoriessetwCompan(othertrial1.2.3.Fig. 4. Software C-Mold: plastic temperatureTechnology 175 (2006) 1519 17able 3dimensions for 2400 l main body (mm)1600idth 14801600of the upper container was a hard design problem; it wasrequired for functional use but supposed an undercut areainvolving slides in the mould.Part volume was adapted and different aesthetic formsappearedfeasible conjunction of the possible thick-ness by manufacture with the thickness and forms bymechanical resistance. In this step, finite analysis, solid3D design and filling simulation were made simultane-ously (Figs. 3 and 4). The final part dimensions are shownin Table 3.With these basic magnitudes calculated in these four steps,design team had an initial point for the final drawing ofand the inclusion of the elements of details likedown of output angles, radios, position of acces-of the set (cork, skid, etc.). Industrial flow analysis wasin definitive way, fixing optimum positions for manifoldorking together with the mould maker, Kyowa Industrialy with mould plants in the USA, Japan and Mexico.The main aspects of the process and their simulationsdetails cannot be presented in order to protect indus-know-how) are:Model of the figure with geometries type 2.5D.Location of the entry points to the cavity. The use of racetracks for a better control of the filling was considered,following rheological design rule for simultaneous end offilling at the end of the cavity (avoiding over-pack effect),especially considering the border shape with semicircularareas.Optimal conditions of process: the selection of temper-ature and its relation with thickness and cycle stronglyconditioned the permissible values for the design. Valuesbetween 210 and 250C were evaluated.at ejection and cooling lines layout.18 ProcessingFig.mould.4.tests(islatedbecausegradientscould5.J. Aisa et al. / Journal of Materials5. Real container model used for testing industrial conditions in 2400 lThe adjustment of the filling form by means of the cor-rect programming of speeds became essential. At constantspeed profile, the increase of pressure-supposed values ofinadmissible force of closing by the limitation imposedto the dimensions of the machine. In the final arrange-ment for container mould, several ram speed stages wererecommended.This procedure was experimentally validated with realusing already existing smaller dimension containerFig. 5).Typical ram speed profile calculated with CAE techniquesshown in Fig. 6, but this “function” cannot be trans-to the injection machine without practical arrangements,hydraulic systems are not able to follow all thoseexactly. Anyway, around 15% less clamping forcebe achieved after this optimisation procedure.After the filling possibilities were fixed, this was verifiedwith a new numerical model by the mould maker fromthe initial ideas sent by the design equipment and withthe final hot runner system data necessary for the mould.Fig. 6. Theoretical ram speed profile from computer results.6.detectingofcessing(2025ouslyTechnology 175 (2006) 1519Fig. 7. Real sample in CONTENUR assembly plant.The sequential technology was considered as a possibil-ity with the purpose of reducing filling pressure, but thepractical arrangement, the maintenance and possible shut-downs underestimated their use.Finally, the analyses of cooling of the mould, packing andwarpage induced by the process were developed. In thisway, different constructive materials were used accordingto their thermal conductivity, adjusting cooling layout pro-vided by Kyowa Industrial Company. Final mould weightwas higher than 150,000 kg (up to 150 metric tonnes).Actually, more than 6000 pieces were made withoutany problem in the injection, expulsion or the lifethe component in good condition (Figs. 7 and 8), and pro-rates are similar with other existing 1000 l containersparts per hour). Other components were simultane-designed and, in fact, it was more complicated to getFig. 8. Complete 2400 l waste container, including all components.J. Aisa et al. / Journal of Materials Processing Technology 175 (2006) 1519 19fine results, for example, in container lids, obviously smallerthan the body.For the authors, the final conclusion is that CAE tools werebasic in design process, and also compared with knowledgeand real test using similar moulds.AcknowledgementsThe authors want to extend their gratitude to T.I.I.P.a.i.T.I.I.P. Group and CONTENUR Technical Staff, for theirsupport and facilities to reach this final goal and very specialthanks to Dr. Castany for all their “know-how” on plasticinjection moulding process and design, exposed in manytrainingReferences1 C. Austin, Lean moulding: faster = cheaper = better, in: J.F. Stevenson(Ed.), Innovation in Polymer Processing Moulding, Hanser, 1996.2 H. Gastrow, Injection Moulds: 102 Proven Designs, Hanser, 1983.3 M. Ezrin, Plastics Failure Guide: Cause and Prevention, Hanser, 1996.4 European Norm EN 12574: stationary waste containers: containerswith a capacity from 1700 l to 5000 l, CEN/TC 183/WG1, 2000.5 G. Menges, P. Mohren, How to Make Injection Moulds, Hanser, 1996.6 J. Fuentelsaz, Metodologa para el diseno de componentes de plasticoinyectados, Doctoral Thesis, University of Zaragoza, Spain, June,1993.7 F.J. Castany, F. Serraller, I. Clavera, C. Javierre, Methodology in gasassisted moulding of plastics, J. Mater. Process. Technol. 143144(2003) 214218.8 F.J. Castany, J. Fuentelsaz, F. Serraller, J. Llado, F. Martnez, Sim-ulacion aplicada al diseno y produccion de componentes inyectados,courses and seminars around the world. Plasticos Universales, 35, num. 11, September, 1991. 大型注塑模具设计仿真工具:2400 升固体废弃物集装箱摘要大型容器产品通常使用诸如滚塑的程序,这些技术没有零件重量或尺寸限制。TIIP ,萨拉戈萨大学注塑成型的机械工程,在欧洲标准下研发的CONTENURTM 固体废物的新容器高达 2000 升 ,其结果是一个新的主体达 60公斤重。设计过程中结合了数项 CAE 工具(美学设计,机械设计及流变模拟) ,并在去年 6 月,显示了最终结果,通过了不同的测试。如今,在市场上有超过5000 个成品在模具生产过程中没有做过基本的修改(超过 100 吨的重量) 。本文重点论述集成工具和流程的设计与产品定义(即注射压力,冲击厚度和形状的一部分力量)的方法。在这个过程中,特别是模具控制一些参数(注射速度,温度,粘度,浇口位置.)的细节。关键词:CAE 设计;容器;注塑成型1.引言过去的几年,CAE 工具在注射热塑性弹性体成型行业,构建了一个真实的革命。一个开始直到最终的解决方案(包括几个过程如开发、测试的原型,修改数据,新的测试,)的过程已经被一个更快的设计、翻译过程和最终的客户在同一个电脑文件下一起工作(“并行工程” )的过程取代。因此 ,对模具制造和完成时间减少极大,同时,引入了一些关于使用 CAE 的建议。萨拉戈萨工业大学注射塑料(T.I.I.P)车间,C.S.I.C 相关单位,在注射热塑性弹性体成型中,使用 CAE 工具已经超过了 15 个年头,同时在不同行业(机动车、家电、包装、玩具等)的上百个项目中积累了很多的经验。T.I.I.P.的工作也包含着和欧洲不同的公司一起调研的项目(聚合物流变性、半自动磨具设计等)。同时,这个组织一直意识到安排仿真技术制造的重要性,这种形式已经合作并且由塑料工业基金会注射成型部研究会体质指导。这个组织给注射成型企业提供了各项服务,并且从中没有任何盈利(如图 1)。许多国家的工业组织通过不同的程序和研究方向对这个中心进行了支持(新的工艺比如气辅技术或喷流注射成型;新的设计比如使用压力和温度的设备的过程测量技术)。图 1 T.I.I.P 注塑成型区域概貌 2.容器工程1999 年,第一个参与城市固体剩余物收集容器制造的西班牙公司(Contenur SPAIN,SL)去 T.IIP-aiTIIP 集团共同进行大尺寸的注塑件的设计工作,随后测试了这些方案在这一领域应用的实际可能性。该项目的主要目标是快速制造大容量(2400 L 和更多)的容器,与市场产品中加入了昂贵的加固结构旋转成型的焊接金属板或塑料制品产生竞争。显然,构成容器的所有部件中,主要的困难是单一模腔部分的制造。这个文献提供了几个零件和模具设计的例子和失败的建议2,3,但是不太可能找到 40kg 重的大的塑料部件,而且,这个模具尺寸上的一个错误没有简单的解决方案(运输到模具工具制造商的制造工厂将会太昂贵,试验和误差的方法也是不提供) 。对于这个部件的设计,必须考虑到以下几个方面:与欧洲标准 EN125744要求的基本尺寸一致;卸载电阻(排出侧)如(图 2) ;在功能条件和位置区具有高的耐冲击性;表面容易清洗;美学设计;最低的成本(不仅是加工和装配,还包括维护) ;安装的冲压机施加的锁模力限制(大型机器锁模力的限制范围在 5000 吨和 10000 吨之间) ;准备标记,也就是说,有自由的和平坦的空间;;材料的限制:采用其他 CONTENUR 设计的相同材料。图 2. 装卸作业的边界条件,材料非线性模型,有限元模型。特别注意的两个限制:范围内的最低成本和最大锁模力。对于最低成本,厚度是关键(原料的成本) ,在制造时确定;因此,派生机器的成本大约为厚度5的平方。另一方面,为了降低其合模力,部件的投影面积和分布的压力与一部分厚度也有很大的关系(狭窄区域产生较高的注射压力,可能也会产生大合模力) 。由 Castany 等研发的方法,不仅用于注射成型,也适用于其它类似的技术6-8,如下:(a)测定产品的可行性:锁模力和厚度在欧洲标准允许的基本几何条件下调整尺寸。在这一步只是一般的线条设计,而不做功能细节。一些基本的结果如下表 1 所示。这些分析通过遗传物质的基本参数,高密度聚乙烯(表
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:收音机中框零件注射模设计【13张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-10112835.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!