




已阅读5页,还剩92页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
161.1 二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用 a(a0)的意义解答具体题目提出问题,根据问题给出概念,应用概念解决实际问题教学重难点关键1重点:形如 a(a0)的式子叫做二次根式的概念;2难点与关键:利用“ (a0)”解决具体问题教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本 P2 的三个思考题:二、探索新知很明显 3、 10、 46,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如 a(a0) 的式子叫做二次根式,“ ”称为二次根号1-1 有算术平方根吗?20 的算术平方根是多少?3当 a0)、0、 42、- 、 1xy、 (x0,y 0)分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或 0解:二次根式有: 2、 x(x0)、 0、- 2、 xy(x0,y0);不是二次根式的有: 3、 1、 4、 y例 2当 x 是多少时, 3x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于 0,所以 3x-10,31x才能有意义解:由 3x-10,得:x 13当 x 3时, 在实数范围内有意义三、巩固练习教材 P5 练习 1、2、3四、应用拓展例 3当 x 是多少时, x+ 1在实数范围内有意义?分析:要使 23+ 在实数范围内有意义,必须同时满足 23x中的0 和1x中的 x+10解:依题意,得 01x由得:x- 32由得:x-1当 x- 且 x-1 时, 3x+ 1在实数范围内有意义例 4(1)已知 y= 2+ +5,求 y的值(答案:2)(2)若 1a+ b=0,求 a2004+b2004 的值(答案: 25)五、归纳小结(学生活动,老师点评)本节课要掌握:1形如 (a0)的式子叫做二次根式,“ ”称为二次根号2要使二次根式在实数范围内有意义,必须满足被开方数是非负数六、布置作业练习册16.2 二次根式的乘除教学内容a b (a0,b0),反之 ab= (a0,b0)及其运用教学目标理解 (a0,b0), = (a0,b0),并利用它们进行计算和化简由具体数据,发现规律,导出 a b (a0,b0)并运用它进行计算;利用逆向思维,得出 b= (a0,b0)并运用它进行解题和化简教学重难点关键重点: a (a0,b0), = a b(a0,b0)及它们的运用难点:发现规律,导出 (a0,b0)关键:要讲清 ab(a、0),反过来 ab= (a0,b0)及利用它们进行计算和化简教学目标理解 ab= (a0,b0)和 ab= (a0,b0)及利用它们进行运算利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简教学重难点关键1重点:理解 ab= (a0,b0), ab= (a0,b0)及利用它们进行计算和化简2难点关键:发现规律,归纳出二次根式的除法规定教学过程一、复习引入(学生活动)请同学们完成下列各题:1写出二次根式的乘法规定及逆向等式2填空(1) 96=_, 916=_;(2) 3=_, 3=_;(3) 416=_, 416=_;(4) 8=_, 38=_规律: 916_ ; 163_ ; 416_ ;38_ 3利用计算器计算填空:(1) 4=_,(2) 3=_,(3) 25=_,(4)78=_规律: 34_ ; 23_ ; 25_ ; 78_ 。每组推荐一名学生上台阐述运算结果(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定: ab= (a0,b0),反过来, = (a0,b0)下面我们利用这个规定来计算和化简一些题目例 1计算:(1) 123 (2) 18 (3) 146 (4) 8分析:上面 4 小题利用 ab= (a0,b0)便可直接得出答案解:(1) 23= 1= 4=2 (2) 8= 3842= 3=2(3) 146= 16= =2(4) 8= = =2 2例 2化简:(1) 364 (2)2649ba(3) 2964xy (4) 25169xy分析:直接利用 = b(a0,b0)就可以达到化简之目的解:(1) 364= 8(2)29ba=23ba(3) 264xy= 28xy (4) 2519= 2513三、巩固练习 教材 P14 练习 1四、应用拓展例 3已知 6x,且 x 为偶数,求(1+x)2541x的值分析:式子 ab= ,只有 a0,b0 时才能成立因此得到 9-x0 且 x-60,即 60)和 ab= (a0,b0)及其运用六、布置作业(练习册)116.3 二次根式的加减(1)教学内容二次根式的加减教学目标理解和掌握二次根式加减的方法先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简重难点关键1重点:二次根式化简为最简根式2难点关键:会判定是否是最简二次根式教学过程一、复习引入学生活动:计算下列各式(1)2x+3x; (2)2x 2-3x2+5x2; (3)x+2x+3y; (4)3a 2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并同类项合并就是字母不变,系数相加减二、探索新知学生活动:计算下列各式(1)2 +3 2 (2)2 8-3 +5 (3) 7+2 +3 97 (4)3 -2 + 2老师点评: (1)如果我们把 2当成 x,不就转化为上面的问题吗?2 +3 =(2+3) =5 2(2)把 8当成 y;2 -3 +5 =(2-3+5) 8=4 =8 2(3)把 7当成 z;+2 + 9=2 +2 +3 =(1+2+3) 7=6(4) 3看为 x, 2看为 y3 -2 +=(3-2) += + 2因此,二次根式的被开方数相同是可以合并的,如 2 与 8表面上看是不相同的,但它们可以合并吗?可以的(板书)3 2+ 8=3 +2 2=53 + 7=3 3+3 =6所以,二次根式加减时,可以先将二次根式化成最简二次根式, 再将被开方数相同的二次根式进行合并例 1计算(1) 8+ (2) 16x+ 4分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并解:(1) + =2 +3 =(2+3) 2=5(2) 16x+ 4=4 x+8 =(4+8) x=12例 2计算(1)3 8-9 3+3 12(2)( 4+ 0)+( - 5)解:(1)3 8-9 13+3 2=12 3-3 +6 =(12-3+6) 3=15(2)( 4+ 0)+( - 5)= 48+ 20+ 1- 5=4 +2 5+2 - =6 3+三、巩固练习教材 P19 练习 1、2四、应用拓展例 3已知 4x2+y2-4x-6y+10=0,求( 293x+y2 3xy)- (x 2 1-5x yx)的值分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1) 2+(y-3 )2=0,即 x= 1,y=3 其次,根据二次根式的加减运算,先把各项化成最简二次根式, 再合并同类二次根式,最后代入求值解:4x 2+y2-4x-6y+10=04x 2-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司祭扫烈士墓活动方案
- 2025年中学教师资格考试试卷及答案
- 2025年卫生检验与检疫专业知识考试试题及答案
- 2025年项目管理专业资格考试试题及答案
- 2025年认证会计师考试试卷及答案
- 2025年生态系统管理与保护专业考试题及答案
- 2025年人力资源管理与实务课程考试卷及答案
- 2025年社区心理服务与危机干预专业知识测试试题及答案
- 2025年工程管理与项目管理考试试题及答案
- 2025年工业机器人与自动化技术考试题及答案
- 3停止间转法教案
- 2022-2023学年重庆市合川市三下数学期末学业质量监测模拟试题含解析
- 文创园物业管理方案
- 全过程造价咨询服务实施方案
- 初二生地会考复习资料全
- 里氏硬度法检测钢材强度范围记录表、钢材里氏硬度与抗拉强度范围换算表
- 《屹立在世界的东方》示范课教学课件【人教部编版小学道德与法治五年级下册】
- 四川省宜宾市翠屏区中学2022-2023学年数学八年级第二学期期末检测试题含解析
- 2020-2021成都石室联合中学蜀华分校小学数学小升初模拟试卷附答案
- 某冶金机械厂供配电系统设计
- 《在中亚细亚草原上》赏析 课件
评论
0/150
提交评论