资源目录
压缩包内文档预览:(预览前20页/共47页)
编号:10239641
类型:共享资源
大小:3.23MB
格式:ZIP
上传时间:2018-06-26
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
35
积分
- 关 键 词:
-
液压
机械手
设计
全套
cad
图纸
- 资源描述:
-








- 内容简介:
-
下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 11970985I 摘 要本次设计的多功能机械手为液压机械手,主要由手爪、手腕、手臂、机身、机座等组成,具备上料、翻转和转位等多种功能,并按自动线的统一生产节拍和生产纲领完成以上动作。本机械手机身采用机座式,自动线围绕机座布置,其坐标形式为圆柱坐标式,具有立柱旋转、手臂伸缩、腕部转动和腕部摆动等 4 个自由度;驱动方式为液压驱动,利用油缸、齿轮、齿条实现直线运动;利用油缸与齿轮、齿条或链条实现回转运动。液压驱动的优点是压力高、体积小,出力大,动作平缓,并能在中间位置停止。本次设计的机械手能对不同物体完成多种动作。关键词: 机械手;圆柱坐标;液压驱动 下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 11970985II AbstractThe design of multi-manipulator hydraulic manipulator general, mainly by the gripper, wrist, arm, body, base etc., with the material, flip, and a variety of functions such as translocation, in accordance with the unified automated production line beat and production program have done so. This machine adopts the base-type mobile phone, automatic wire around the base layout, its coordinates in the form of cylindrical coordinate type, with column rotation, arm stretching, wrist rotation and wrist swing and so four degrees of freedom; drive mode for the hydraulic drive, use fuel tank, gear, rack to achieve linear motion, use of tanks and gear, rack or chain to achieve rotary motion. Hydraulic drive has the advantage of high pressure, small size, contribute to a large, gentle movement and can stop in the middle. The design of the robot can complete a variety of different objects in action.Keywords: mechanical hand; cylindrical coordinate; fluid power drive下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 11970985III 目 录摘 要 .IAbstract .II第 1 章 绪论 .11.1 机械手研究目的及意义 .11.2 机械手的发展现状及应用 .11.2.1 发展现状 .21.2.2 应用 .3第 2 章 方案的确定 .62.1 直角坐标型机械手 .72.2 圆柱坐标式机械手 .72.3 球坐标式机械手 .82.4 关节式机械手 .8第 3 章 手部结构设计 .103.1 设计的原始参数 .103.2 夹持式手部结构 .103.2.1 手指的形状和分类 .103.2.2 设计时考虑的几个问题 .103.2.3 手部夹紧油缸的设计 .11第 4 章 手腕结构设计 .154.1 手腕的自由度 .154.2 手腕的驱动力矩的计算 .154.2.1 手腕转动时所需的驱动力矩 .154.2.2 手腕回转油缸的驱动力矩计算 .174.2.3 手腕回转缸的尺寸及其校核 .18第 5 章 手臂工作油缸的设计与计算 .225.1 手臂伸缩油缸的设计与校核 .225.1.1 尺寸校核 .225.1.2 导向装置 .255.1.3 平衡装置 .265.2 手臂升降油缸的设计与校核 .265.2.1 尺寸设计 .265.2.2 尺寸校核 .265.3 手臂回转油缸的设计与校核 .275.3.1 尺寸设计 .275.3.2 尺寸校核 .27下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 11970985IV 第 6 章 液压驱动系统的设计 .296.1 液压系统的简介 .296.2 液压系统的组成 .296.3 机械手液压系统的控制回路 .296.3.1 各液压缸的换压回路 .296.4 液压系统控制原理图设计 .306.4.1 各缸运动过程分析 .30第 7 章 机械手的可编程控制 .337.1 可编程控制的选择 .337.2 电磁铁动作顺序 .337.3 输入输出触点的分配 .347.4 外部接线图 .357.5 状态控制图 .367.6 梯形图 .38结 论 .39致 谢 .40参 考 文 献 .41下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 11970985V 下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709851第 1 章 绪论液压机械手,就其本质上来说,属于工业机器人的范畴,机器人学是近几十年来迅速发展起来的一门综合学科。它集中了机械工程、电子工程、计算机科学、自动控制以及人工智能等多种学科的最新研究成果,体现了机电一体化技术的最新成就,是当代科学技术发展最活跃的领域之一,也是我国科技界跟踪国际高技术发展的重要课题。1.1 机械手研究目的及意义随着现代科学技术的发展,机械手的应用也越来越广泛。在机械工业中,大量应用于铸、锻、焊、冲、热处理、机械加工以及装配等工种。在其他部门,如轻工业、建筑业、国防工业等工种中也均有应用 2。在机械工业中,应用机械手的意义可以概括如下:1.可以提高生产过程的自动化程度。应用机械手有利于在自动生产线中实现材料的传送、工件的装卸、刀具的更换、以及机器的装配等的自动化程度,从而提高劳动生产率,降低生产成本。2.可以改善劳动条件,避免人身事故。在高温、高压、低温、低压、噪声、臭味、有放射性物质的环境场合,用人手直接操作是很危险的甚至是不可能的。而应用机械手即可部分或者全部代替人完成作业,使劳动条件得以改善。3.可以减少人力,并便于有节奏的生产。应用机械手代替人手进行作业,这是直接减少人力的一个侧面,同时应用机械手可以连续的工作,这是减少人力的另一方面。因此,在自动化机床和综合加工自动线上,目前几乎都设有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的生产。4.用液压系统来控制机械手,比一般的机械控制具有更好的稳定性,并且控制的精确度更高。5.运用机械手可以实现连续的生产,而大大提高在生产线的工作的时间,从而能大幅提高劳动的生产率。1.2 机械手的发展现状及应用下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709852机械手的迅速发展是由于它的积极作用正日益为人们所认识;其一、它能部分代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工作的传送和装卸;其三,它能操作必要的机具进行焊接和装配。从而大大的改善工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐。因而,受到各先进工业国家的重视,投入大量的人工物力加以研究和应用。尤其在高温、高压、粉压、噪音以及带有放射性的污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视 1。1.2.1 发展现状专用机械手经过几十年的发展,如今已进入了以液压机械手为标志的时代。液压机械手可以应用于更加多的场合,从而节约了不少的开发以及设计的成本。由于液压机械手的发展,进而促进了智能机器人的研制。通用机械手涉及的内容,不仅包括一般的机械、液压、气动等基础知识,而且还应用了一些电子技术、电视技术、通讯技术、计算技术、无线电控制、仿生学等,因此它是一项综合性较强的技术。目前国内外对发展这一技术都很重视。几十年来,这项技术的研究和发展一直比较活跃,设计在不断的修改,品种在不断的增加,应用领域在不断的扩大。虽然在这方面相对于发达国家还有点落后,但是国内现在也越来越感觉到机械手的重要性,国家大力支持相关的设计及产品的开发。在机器人的发展以及机械手的设计上也取得了一定的成果,国内每年都将举行机器人大赛,以增加研发单位的交流与合作。目前国内外的发展趋势是:1研制有更多自由度的液压机械手,这样机械手就可以变得更加的灵活,从而完成更加多的动作。2研制带有行走机构的机械手,这种机械手可以从一个工作地点移动到另一个工作地点。3研制维修维护方便的通用机械手。4研制能自动编制和自动改变程序的通用机械手。5研制具有一定感触和一定智力的智能机械手。这种机械手具有各种传感装置,并配有计算机。根据仿生学的理论,用计算机充当其大脑,使它进行思考和记忆。用听筒和声敏元件作为耳朵能听,用扬声器作为嘴能说话进行应答,用热电偶和电阻应变仪作为触觉和感触。用滚轮或者双足式机构脚来实现自动移位。这样的智能机械手可以由人的特殊语言对其下达命令,布置任务,使自动化生产线成为智能化生产线。6机械手的外观达到美观的要求,尽量用最简单的结构和设备能完成更加多的动下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709853作。7研制具有柔性系统的液压机械手目前,在国外广泛应用的再现式液压机械手,虽然一般也都有记忆装置,但其程序都是预先编好的,或由人在工作之前领动一次,而后机械手可以按领动的工作内容正确进行再现动作。如果把这种再现式通用机械手称为第二代机械手的话,那么现在处于研制阶段的智能机械手就是第三代了。现在研究的机械手正在朝着一种可以存储大量的程序的并且可以改变并重新写入程序的方向发展,而且机械手具有比原来的更多的自由度。现在国内具有越来越强的自主研发的单位,我相信在不久的将来,我国一定能够赶上并将且超越发达国家在机械手乃至整个机械方面处于领先地位。1.2.2 应用机械手一半分为三类。第一类是不需要人工操作的通用机械手。它是一种独立的不附属于某一主机的装置。它可以根据任务的需要编制程序,以完成各项规定操作。它的特点是具备普通机械的物理性之外,还具备使用机械、记忆智能的三元机械。第二类是需要人工操作的,称为操作机。它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作机械手来进行探测月球等。工业中采用的锻造操作机也属于这一范畴。第三类是专用机械手,主要附属于自动机床或自动线上,用以解决机床上下料和工件传送。这种机械手在国外称为“Mechanical Hand”,它是为主机服务的,由主机驱动;除少数外,工作程序 是固定的,因此是专用的。在国外,目前主要是搞第一类通用机械手 3。机械手首先是从美国开始研制的。1985 年美国联合控制公司研制出第一台机械手。它的结构是:机体上安装一回转长臂。端部装有电磁铁的工件抓放机构,控制系统是示教型的。1962 年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。商名为 Unimate(即万能自动) 。运动系统仿造坦克炮塔,臂可以回转、俯仰、伸缩,用液压驱动;控制系统用磁鼓作存贮装置。不少球坐标式通用机械手都是在这个基础上发展起来的。日本式工业机械手发展最快、应用最多的国家。自 1969 年从美国引进二种典型机械手后,大力从事机械手的研究。据报导,1979 年从事机械手的研究工作的大专院校、研究单位达 50 多个。1976 年各大学和国家研究部门用在机械手的研究经费约占总研究费用的 42%。 1979 年日本的机械手的产值达 433 亿日元,产量为 14535 台。其中固定程序和可变程序约占一半,达 222 亿日元,是 1978 年的二倍。具有记忆功能的机械手产值约为 67 亿日元,比 1978 年增长 50%。智能机械手约为 17 亿日元,为 1978 年的6 倍。截止 1979 年,机械手累计产量达 56900 台。在数量上已占世界首位,约占70%,并以每年 5060%的速度增长。使用机械手最多的是汽车工业,其次是电机、电下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709854器。预计到 1990 年将有 55 万机器人在工作。目前工业机械手大部分还属于第一代,主要依靠人工进行控制;控制方式则为开环式,没有识别能力;改进的方向主要是降低成本和提高精度。下面就国内机械工业、铁路部门应用机械手的简况,以及国外机械工业发展和应用机械手的简况,分别介绍如下。1.热加工方面的应用热加工是高温、危险的笨重体力劳动,很久以来就要求实现自动化。为了实现高效率和工作安全,尤其对于大件、少量、低速和人力所不能胜任的作业就更需要采用机械手操作。机械手在锻造工业中的应用能进一步发挥锻造设备的生产能力,改善热、累的劳动条件。因此,国内首先是采用锻造操作机,装取料机械手来代替人工操作,减轻劳动强度。后来在精锻机上采用机械手,使精短过程自动化,代替人工喂料。国外对锻造机械手的研制工作十分重视,如美国采用圆柱坐标式机械手在 1300 吨锻压机上锻造齿轮毛坯;瑞典采用 Unimate 型机械手在压力机上锻造曲轴;采用Versatran 型机械手生产大型轴承环,机械手在两台液压机间传送轴承环的坯料。锻压机械手的手指部位必须采用耐热钢锻造,相当于 40CrNi2Mo 的材料。同时用空气、水喷雾冷却。机械手外部装有防热护罩,内部通水冷却。机械手在锻造、熔炼方面的应用,国内已研制成功压铸机上下料机械手,上下箱、合箱、浇注机械手,以及铸件表面清理机械手等。有些工厂还将机械手和造型机配合组成铸造生产自动线,彻底改变了铸造生产的面貌。国外对电炉炼钢过程中采用机械手进行了大量的研究。由于强大电流的干扰,影响了机械手的采用,并由于熔渣和钢水难以区别,往往在浇注过程中容易液、渣不分,需研究带有特殊传感装置的机械手,才能实现浇注的机械化和自动化。2.冷加工方面冷加工方面机械手主要用于柴油机配件以及轴类、盘类和箱体类零件单机加工时的上下料和刀具安装等。进而在程序控制、数字控制等机床上应用,成为设备的一个组成部分。最近更在加工生产线、自动线上应用,称为机床、设备上下工序联接的重要手段。国内机械工业、铁路工业中首先在单机、专业上采用机械手上下料、减轻工人劳动强度。如在轴类、螺栓、气阀和螺撑帽坐等零件的加工机床上配置了机械手,代替人工上下料。在三通阀体、轴瓦、平斜铁、柴油机摇臂加工生产自动线上采用单臂、双臂圆柱式机械手,成为联接工序、运送工件的重要装备。并在连杆粗加工自动线上采用数控机械手,这样它不仅担负自动线上机床工件的装卸、运输,并能发出指令指挥全线工作。下载后文件包含有 CAD 图纸和说明书,咨询 Q 197216396 或 119709855国外铁路工业中应用机械手以加工铁路车轴、轮对等大、中批量零部件。并和机床设备共同组成一个综合的数控加工系统。3.拆修装方面拆修装是铁路工业系统房中体力劳动较多的部门之一,促进了机械手的发展。目前国内铁路工厂、机务段等部门。已采用机械手拆装三通阀、钩舌、分解制动缸、装卸轴箱、组装轮对、清楚石棉等,减轻了劳动强度,提高了拆修装的效率。采用机械手进行装配更是目前研制的重点,国外已研究采用摄像机和力的传感装置和微型计算机联接在一起,能确定零件的方位,达到镶装的目的。综上所述,有效的应用机械手,是发展机械工业的必然趋势 4。 J. Cent. South Univ. (2012) 19: 174178 DOI: 10.1007/s1177101209883 Multi-stage optimum design of magazine type automatic tool changer arm KIM Jae-Hyun, LEE Choon-Man School of Mechatronics, Changwon National University, Changwon 641-773, Korea Central South University Press and Springer-Verlag Berlin Heidelberg 2012 Abstract: To enhance machining efficiency, tool change time has to be reduced. Thus, for an automatic tool changer attached to a machining center, the tool change time is to be reduced. Also the automatic tool changer is a main part of the machining center as a driving source. The static attributes of the automatic tool changer using the commercial code, ANSYS Workbench V12, were tried to interpret. And the optimum design of automatic tool changer arm was proposed by performing the multi-stage optimum design. The shape optimization of the automatic tool changer was proposed and the result was verified to obtain acceptable improvements. It is possible to obtain an optimized model in which the maximum deformation, maximum stress, and mass are reduced by 10.46%, 12.89% and 9.26%, respectively, compared with those of the initial model. Also, the results between conventional method by the design of experiments and proposed method by the multi-stage optimum design method were compared. Key words: automatic tool changer; optimum design; structural analysis; exchange arm 1 Introduction Recently, in machine manufacturing industries, molds and machine parts have been changed to small quantity batch production system. Also, improvements in productivity and cutting rate are required. Whereas, it is true that high quality and low cost are to be targeted from a practical standpoint. Therefore, the machine tools for such aims pursue to achieve high-speed processing, implement automation, and reduced lead time. As a result, it is possible to check the states of tools and workpieces using proper sensors in the machine tools. In addition, a machining center based on an automatic tool changer (ATC) and an automatic pallet changer (APC) aims to operate an unattended operation factory for 24 h. The automatic tool changer stores the tools used in a machining center to its magazine and changes the tools automatically as required. The tool changed by such ATC is precisely equipped to a spindle 1. Also, it represents an advantage that an operator of the machining center is able to engage in other works due to the less interference for the machine tools. That is to say, the operator can control other machine tools or prepare the next workpieces, which leads to reduced production time. The magazine type ATC used in this study represents a feature that many tools are stored in the magazine. In the change of tools, two arms move to change the equipped tool to the next tool by rotating them by 180 in a directly changed manner 2. Thus, it is necessary to ensure the technologies for both the structural characteristics of arms and the design of lightweight simultaneously. In actual industrial fields, design optimization is very important. Therefore, various optimization methods are presented for the optimization of various mechanical parts 3. SONG et al 4 presented optimization design of the short journal bearing by using enhanced artificial life optimization algorithm. ALLAIRE et al 5 combined the topological and shape derivations on the structural optimization. BAGCI and AYKUT 6 presented Taguchi optimization to verify the optimum surface roughness of the CNC milling. LAMBERTI 7 presented a design optimization algorithm based on simulated annealing for truss structures. SEKULSKI 8 presented that the genetic algorithm can be an efficient multi-objective optimization tool for simultaneous design of the topology and sizing of ship structures. SEO et al 9 presented shape optimization and its extension to topological design based on isogeometric analysis. In optimizing the ATC arm, the factors of the structural characteristics and the lightweight are contrary to each other 10. It shows a trade-off that if it pursues to improve the lightweight in structures, the structural characteristics will represent a weakness, and if the Foundation item: Work(RTI04-01-03) supported by Grant from Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE), Korea Received date: 20110426; Accepted date: 20111010 Corresponding author: LEE Choon-Man, Professor, PhD; Tel: +82552133622; E-mail: cmleechangwon.ac.kr J. Cent. South Univ. (2012) 19: 174178 175structural characteristics are improved, the achievement of the lightweight is difficult. Therefore, for satisfying these contrary factors and optimizing them, the optimization of such arm shapes in different way is presented by using the design of experiments 11. In this study, for achieving a more improved optimization model than the previous study 11, a multi-stage optimum design was performed. The optimum design was presented using the commercial analysis programs, CATIA V5 and ANSYS Workbench, and the analytic validity was investigated through comparing the initial and conventional optimized models with the optimized model implemented in this study. 2 Structure of ATC ATC consists of three elements, such as magazine part, changer part, and arm part. The magazine part is a device that stores many tools and changes tools using servo motors. The changer part is equipped with servo motors, which rotate arms. The arm part shows an arm shape and changes tools by gearing the tools in the spindle and magazine in a machining center by rotating them by 180. Figure 1 illustrates the entire structure of the ATC modelled by using the CATIA V5 R17. Fig. 1 Structure of magazine type ATC The structural analysis of the initial model of the arm was performed. Regarding the reference of the performed finite element analysis, the finite element analysis of the initial model was carried out using the commercial analysis program, Ansys Workbench V12. The analysis was performed by minimizing the additional part employed in the arm. In the analysis method, a hex dominant method was applied in which a finite element analysis had totally 51 794 nodes and 13 496 elements. Figure 2 shows the initial finite element model of the arm. Fig. 2 Initial finite element model of arm For the boundary conditions in the analysis, the hole at the center of the ATC arm was supported, and the gravitational acceleration was applied to the entire body. In the load conditions, a load of 147 N was applied to the clamps at both ends for considering the maximum weight of the tools. The results of the structural analysis are presented in Fig. 3. The maximum deformation of the initial model at the clamps is 5.748 7 m and occurs at both ends. Also, the maximum stress is generated at the edge of the section, which pushes the rear finger of the ATC arm, and is presented by 4.176 2 MPa. Fig. 3 Structural analysis of arm: (a) Deformation distribution; (b) Stress distribution 3 Multi-stage optimization of arm The static compliance, fx(=D/F), can be presented by an inverse number of the static stiffness. In particular, in some machine structures like machine tools and industrial robots that require high accuracy and machining efficiency, it becomes the most important static characteristic as well as the structure weight where these factors are to be comprehensively and simultaneously evaluated. As mentioned above, the optimization of the static issue is determined as the static characteristic of these two objective functions and the minimization issue of the weight 12. J. Cent. South Univ. (2012) 19: 174178 176 Thus, in this study, the optimization is performed as a multi-stage manner for satisfying each objective function. The first stage is configured as a stage that improves the static characteristics. By defining design factors that minimize the deformation, an optimum model can be induced. The second stage is determined as a stage for implementing its lightweight. Based on the optimum model presented in the first stage, the shape optimization is performed by aiming a reduction in its weight by 10%. 3.1 First stage of optimum design of arm In the first stage of the optimum design, the optimum design aims to minimize the deformation of the arm. Figure 4 illustrates the design variables of the arm. Fig. 4 Factors of ATC arm The general formalization for the dimension and the optimum shape design can be presented by defining objective functions and limitation condition functions 1315. For implementing the optimum design for the ATC arm, the formalization is determined as follows: Find X Minimize deformation (X) Subject to a aL A, B, C U(=A, B, C) X=A, B, C where X represents one of the design variables, and and show the stress and deformation, respectively. Also, aand ashow the allowance values for the stress and deformation, respectively. The terms of A, B, and C are the design variables. The design variables are configured by 30 mm in order not to present the influences of the collision and interference in structures on the design. In the optimum design, the optimum solution can minimize the deformation of the arm using the CATIA V5 Product engineering optimizer. Table 1 gives the results of the optimization. Figure 5 illustrates the results of the structural analysis of the optimal designed arm. The boundary conditions in the analysis are configured as the same as the existing initial model. Table 1 Results of optimization for reducing deformation Factor Initial model Optimal designed modelA/mm 25 3.396 B/mm 70 73.68 6 C/mm 27 32.68 6 Maximum deformation/m 5.748 7 4.668 3 Maximum stress/MPa 4.176 2 3.607 2 Fig. 5 Structural analysis of optimized arm for reducing deformation: (a) Deformation distribution; (b) Stress distribution 3.2 Second stage of optimum design of arm Achieving the lightweight of the arm is an important factor for reducing the cost of workpieces. Also, it is possible to improve the economy by introducing a lightweight structure 16. Therefore, the optimum design for implementing the lightweight of the arm is performed in the second stage. The target in reducing the mass is 10% of the arm based on the model proposed in the first stage of the optimum design. For reducing the mass of the arm, the shape optimization is carried out using the ANSYS Workbench shape optimization function. The formalization for the optimum design can be presented as follows: Find Z Minimize mass (Z) Subject to a aLrUZ=r where Z is one of the design variables, and show the stress and deformation, respectively, and a and aare the allowance values for the stress and deformation, respectively. Also, the design variable, r, is configured J. Cent. South Univ. (2012) 19: 174178 177to find all sections in which the mass reduction is possible except for the sections, which have some limitations in the design. Figure 6 illustrates the results of the optimum solution that minimizes the deformation of the arm. As shown in Fig. 6, the section presented by Remove represents a mass reducible section by removing it. Based on the results, the reducible sections are removed to a maximum level. Figure 7 shows the proposed optimum shape for lightweight of the arm based on the results of the shape optimization. Fig. 6 Result of shape optimization using ANSYS Fig. 7 Redesign of arm The structural analysis is performed using the proposed optimum design. Also, the boundary conditions in the analysis are applied as the same as the existing initial model. Figure 8 shows the results of the structural analysis, which is carried out through applying the optimum shape. Fig. 8 Structural analysis of optimized arm for lightweight: (a) Deformation distribution; (b) Stress distribution The maximum deformation of the model, which applies the optimal design, is reduced from 5.748 7 m presented in the initial model to 5.147 5 m by as much as 10.46% and generated at the end of the clamp as the same as the initial model. Also, the maximum stress is reduced from 4.176 2 MPa presented in the initial model to 3.637 9 MPa by as much as 12.89%. In addition, the mass is reduced from 7.871 2 kg presented in the initial model to 7.142 5 kg by as much as 9.26%. Table 2 presents the results of the comparison of the optimum design 11 using the design of experiments performed with the multi-stage optimum design implemented in this study. Table 2 Comparison of results PropertyInitialmodel(A) Conventional method (B) Proposed optimization method (C) Ratio of Ato C/% Ratio of Bto C/% Maximum deformation/m 5.748 7 5.219 7 5.147 5 10.46 1.38Maximum stress/MPa4.176 2 4.163 3.637 9 12.89 12.61Mass/kg 7.871 2 7.568 3 7.142 5 9.26 5.63In the comparison of the results obtained in this study with the results of the design of experiments, the maximum deformation, maximum stress, and mass are reduced by 1.38%, 12.61%, and 5.63%, respectively. Thus, it can be seen that the multi-stage design using the CATIA and ANSYS performed in this study makes possible to draw more improved optimum design than the existing study. 4 Conclusions 1) By performing the multi-stage optimum design, it is possible to obtain an optimized model in which the maximum deformation, maximum stress, and mass are reduced by 10.46%, 12.89%, and 9.26%, respectively, compared with those of the initial model. 2) In the comparison of the optimum design between the multi-stage optimum design and the previously performed design of experiments, the maximum deformation, maximum stress, and mass are reduced by 1.38%, 12.61% and 5.63%, respectively. 3) By comparing the results between conventional method by the design of experiments and proposed method by the multi-stage optimum design, it is verified whether the optimum design is carried out properly. 4) Based on verification of using commercial programs of CATIA and ANSYS for multi-stage optimum design, it is expected that it can be applied to the optimum design of machine tool structures. J. Cent. South Univ. (2012) 19: 174178 178 References 1 LEE S W, LEE H K. Reliability evaluation of ATC for high-speed line center J. Journal of Korean Society for Precision Engineering, 2006, 23(6): 111118. (in Korean) 2 BARK T Y. The design of automatic tool changer M. Korea Advanced Institute of Science Univ Press, 1977: 111. (in Korean) 3 ROY R, HINDUJA S, TETI R. Recent advances in engineering design optimization: Challenges and future trends J. CIRP Anna
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。