05设计说明书.doc

基于ANSYS发动机曲轴有限元分析说明书论文

收藏

压缩包内文档预览:(预览前20页/共37页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10247788    类型:共享资源    大小:4.47MB    格式:ZIP    上传时间:2018-06-28 上传人:小*** IP属地:福建
50
积分
关 键 词:
基于 ansys 发动机 曲轴 有限元分析 说明书 仿单 论文
资源描述:
基于ANSYS发动机曲轴有限元分析说明书论文,基于,ansys,发动机,曲轴,有限元分析,说明书,仿单,论文
内容简介:
姣 涓 璁 璁紙璁 鏂囷級浠 鍔 涔 璁捐 锛堣 鏂囷級棰樼洰锛氬熀浜嶢 NSYS鍙戝姩鏈烘洸杞存湁闄愬厓鍒嗘瀽 瀛敓濮撳悕锛氱帇闈栧畤 瀛 鍙凤細 1204104040 涓 涓氾細杞締宸 鎵鍦 闄細鏈虹數宸瀛櫌 鎸囧 鏁欏笀锛氳淳姘稿垰 鑱 绉帮細璁插笀 鍙戜换鍔功鏃湡锛015骞2鏈0鏃浠诲姟涔鍐欒 姹 1锛庢瘯涓氳璁紙璁烘枃锛変换鍔功鐢辨寚瀵兼暀甯堟牴鎹悇璇鹃鐨勫叿浣撴儏鍐靛鍐欙紝缁忓鐢熸墍鍦笓涓氱 浜 锛 櫌锛 瀵 瀛 鐢熸 浠诲姟涔 鍦 瘯 涓氳璁紙璁烘枃锛 濮 涓 骞 缁欏 鐢 2锛 换鍔功鍐 鐢 currency1“鏁功鍐欙紝涓fifl 変功鍐欙 鏁欏姟”涓璁捐 鐨”數瀛枃 嗘紙鍙 鏁欏姟”涓 锛 帮紝 枃 鍙 浣 紝 1.5 紝 鎵撳 鍦 涓 3锛 换鍔功鍐鍐 鍐 锛 诲 瀛敓姣璁捐锛堣 鏂囷級 鐨 儏鍐 涓 紝 湁鍙 锛 墍鍦笓涓氬 紙闄 級涓 棰 壒鍚庢柟鍙噸鏂板鍐欍4锛 换鍔功鍐湁鍏斥滃 闄濄佲滀笓涓氣濈瓑鍚嶇 鐨勫鍐欙紝搴“啓涓 枃鍏 锛屼笉鑳藉啓鏁板瓧浠爜 傚 鐢熺 鈥滃 鍙封濊鍐欏叏鍙凤紝涓 兘鍙 啓鏈鍚浣嶆垨 1浣嶆暟瀛椼5锛 换鍔功鍐呪滀富佸弬鑰冩枃鐚 濈 啓锛 鎸夌収 婇噾闄 鎶瀛櫌鏈 姣 璁捐 锛堣 鏂囷級鎾板啓瑙勮寖 嬬 涔啓 6锛庢湁鍏冲勾鏈堟棩绛棩鏈熺 啓锛 撴鐓 浗鏍嘒B/T 7408鈥4 婃暟鎹 厓鍜屼氦鎹忋佷俊鎭 氦鎹棩鏈熷 鏃堕棿琛娉曘 氱 锛屼竴寰嬬敤闃挎媺浼暟瀛椾功鍐欍傚 鈥 002骞 鏈 鏃濇垨鈥 002-04-02鈥濄姣 涓 璁 璁紙璁 鏂囷級浠 鍔 涔 1锛庢湰姣璁捐 锛堣 鏂囷級璇鹃搴旇揪鍒扮 鐩 锛 鏇茶酱鏄 鍔 満涓 渶閲 鐨勯浂浠朵箣涓 鏇茶酱鎵垮彈鐫姘旂几鍐呯 姘斾綋鍘 姏鍙線 鏃 浆 噺鎯 姏曡捣鐨勫懆鏈熸彉鍖凤紝 骞 緭 烘 墍浠 浜 稿 鍔 満鏇茶酱锛 浣 寰 搴“姏 佸彉 鍙 甯 紝瀵 鎸囧 鏇茶酱鐨勮璁 锛 叿鏈 噸 涔 鏈 璁捐 鍏 敤 CATIA 虹 鍙戝姩鏈烘洸杞存 紝鍐 鐢NSYS杞 闈欏姏鍒嗘瀽 2锛庢湰姣璁捐 锛堣 鏂囷級璇鹃浠诲姟鐨勫 锛 濮暟鎹 currency1鏈 姹 佸浣“ 姹瓑锛細 姣璁烘枃1涓囧瓧宸 fi 姹傚fi 虹 鍏冲 fl 鏁绛 傚 鐩 鍦 瀛敓缁鍒嗘瀽鍜鍐 鍏”棰樼 宸 鑳藉姏 ,撳 鍜鍖栧 鐢熺 锛鍏诲 鐢熸 鐢 currency1鏈 鏂藉 璁捐 鎵 锛 琛暟鎹 栧啓鎶鏈 枃 浠瓑鏂 鐨勫浣“兘鍔 浣垮 鐢熷 宸 佸 ,宸 浣 傚 鏃 琛 鍚戝 闄 鍚 敓浜 闈 宸鎶鏈 涔 宸 鏂 姣 涓 璁 璁紙璁 鏂囷級浠 鍔 涔 3锛 鏈瘯涓氳璁紙璁烘枃锛 棰 fl “ 琛 佸 瓑 細1 氳 Creo瀵 杞 鍔 満鏇茶酱 綋 烘 2 佸 ANSYS杞 涓 琛湁闄愬厓 鐨勫 fl3 佸fi 烘洸杞浣 佷 鍚” 搴“姏浜戝 骞 琛屼 鍖 璁 4 瘯涓氳 鏂涓囧瓧宸锛苟闄” 鍏 鍒嗘瀽鏁锛5 佸 鏂囧弬鑰冭鏂欒瘧鏂囷紙闄勫鏂囷級 3000瀛4锛 富佸弬鑰冩枃鐚細 1璁稿厗妫狅紝榛勯摱濞 姹借fl勯燵 M.鍖椾含锛氬浗闃插涓氬嚭 锛012.2浣欏織鐢 姹借 嗚 M.鍖椾含锛氭満姊板涓氬嚭 锛009.3鐜柊紝闄堟案娉 鏈 檺鍏冩虹 鍙夾 NSYS搴旂敤M.鍖椾含绉戝 虹増绀撅紝 2008.4鍚缓 姹借鍙戝姩鏈 哰 M. 鍖椾含锛氭満姊板涓氬嚭 锛013.5鍚崜锛 垬鏅撹姮.轰 Pro/E鍜孉NSYS Workbench鐨勫洓 稿 鍔 満鏇茶酱鏈 檺鍏冩 佸 fl怺J.鏂currency1鏈 柊宸 壓锛 014锛4):89-91.6鍒 尝.鏇茶酱鍙 暟鍖栧缓 鏈 檺鍏 fl怺D. 眽锛氭 姹夌悊宸 瀛紝 2006.7璧靛墤纾 鐩垪鍙戝姩鏈烘儻 姏鍒嗘瀽涓 钩琛 禰D.娌冲寳锛氱嚂灞卞瀛紝2014.8鐜 儨.轰 UG/ANSYS鐨 洸杞弬鏁板寲 烘 璁捐 鍙婃湁闄愬厓鍒嗘瀽 D.愰兘锛氳椾氦閫氬瀛紝2012.9閭撳彫鏂囷紝闄堟稕.轰 ANSYS鐨凚N492鍙戝姩鏈烘洸杞存湁闄愬厓鍒嗘瀽J.鍐滀瑁 涓庤 绋 紝2010锛29(8)锛9-33.10犲仴锛 忓繝锛岄儹 忓叞锛屼粯娲轰 ANSYS鐨勫 鍔 満鏇茶酱鏈 檺鍏 fl怺J.鏈虹數鎶鏈 紝 2013锛岋紙3锛細102-102.11鍒 稕.鍐呯噧鏈烘洸杞己搴 绠梉 D.娴 崡锛氬北涓滃瀛紝2008.12鑳粊鍠滐紝搴 ANSYS14.0鏈烘 涓庣粨fl勫 fl湁闄愬厓鍒嗘瀽浠 叆闂 绮鹃歔M.鍖椾含锛氭満姊板涓氬嚭 锛013.13寰愪腑庯紝犺寽锛岀浼 轰 UG鍜孉NSYS鐨勫洓 告洸杞存湁闄愬厓佸 fl怺J.鏈烘 宸涓庤嚜鍔寲锛 009锛55锛 锛細 17-19.14瀛欏啗锛 闀挎灄锛豹鏅嘲 . 圭晫鏉 ”悊瀵 洸杞存湁闄愬厓鍒嗘瀽鐨勫奖鍝嶇 禰J.姹借宸锛005锛7锛 锛細 724-726.15鐜嬮潠宀筹紝涓椇鎵嶏紝鐜旦 轰 Pro/E鍜孉NSYS鐨 洸杞存湁闄愬厓鍒嗘瀽J.鏈烘宸涓庤嚜鍔寲锛007锛40(1):54-56.16姹熷啺锛潕淇婁 .G495鍙戝姩鏈烘洸杞 鍔 鏈 檺鍏 fl怺J.涓鏈烘 锛 003锛19(2)锛4-26.姣 涓 璁 璁紙璁 鏂囷級浠 鍔 涔 5锛庢湰姣璁捐 锛堣 鏂囷級璇鹃宸 璁 锛 2015.12.05-2016.01.15 閫 锛 鍐欏 棰 锛寚瀵兼暀甯 鍙戜换鍔功锛 鐢熸 闃 棰樼 鍏冲弬鑰冩枃鐚 fi鏂欙紝鎾板啓棰 2016.01.16-2016.02.25 愪氦棰 佸 鏂囧弬鑰冭鏂欏璇 枃 瘯涓氳 璁紙璁烘枃锛 濮瘯涓氳璁璁烘枃 ) 2016.02.26-2016.04.15鍏 綋璁捐 柟 鏂 紝 愪氦姣璁捐 锛堣 鏂囷級夌 锛 鍐 腑鏈熸 2016.04.16-2016.05.05 璁烘枃璁 鏄 功 佸 瓑鏉 锛 浜 瘯涓氳璁紙璁烘枃锛 绋 紝鎸囧 鑰佸笀 2016.05.06-2016.05.13 愪氦姣璁捐 鏂 锛 鐢熷 璇勯 鏁欏笀璇勯 瀛敓姣璁捐 锛堣 鏂囷級 2016.05.13-2016.05.26鏍 瀛櫌缁 竴 锛 琛瘯涓氳璁紙璁烘枃锛夌 鎵鍦笓涓氬 瑙細閫氳 浜細 2016 骞 1 鏈 22 鏃姣 涓 璁 璁紙璁 鏂囷級寮 棰 鎶 鍛 璁捐 锛堣 鏂囷級棰樼洰锛氬熀浜嶢 NSYS鍙戝姩鏈烘洸杞存湁闄愬厓鍒嗘瀽 瀛敓濮撳悕锛氱帇闈栧畤 瀛 鍙凤細 1204104040 涓 涓氾細杞締宸 鎵鍦 闄細鏈虹數宸瀛櫌 鎸囧 鏁欏笀锛氳淳姘稿垰 鑱 绉帮細璁插笀 2016 骞 1 鏈8 鏃 寮棰樻姤鍛婂鍐欒 姹 1锛庡紑棰樻姤鍛婏紙鍚 滄枃鐚 患杩扳濓級浣滀负姣曚笟璁捐 锛堣 鏂囷級绛旇京濮斿憳浼氬 瀛 敓绛旇京璧勬牸瀹煡鐨勪緷鎹潗鏂欎箣涓銆傛鎶 斿 鎸囧 鏁欏笀鎸囧 涓 姣 曚笟璁捐 锛堣 鏂囷級宸 鍐 鎵鍦 涓氬 锛2锛庡紑棰樻姤鍛婂瀹currency1“戝姘fifl宸 鏁欏”涓璁捐 鐨數瀛枃 嗘牸寮 帮 鎵撳鍦瀹涓婂 锛 愬 斿 鏃 3锛滄枃鐚患杩扳 鎸 鏂 嗘 枃锛 存 锛 鎵撳锛 鏈 紑棰樻 姤鍛 涓 洰鍐 瀛敓鍐 枃鐚 患杩 鍙 枃鐚 涓 浜 5 囷紙涓 鍐 級锛4锛 湁 鏈 绛 鏈 锛 B/T 74084銆 鎹 厓 鎹牸寮忋佷俊鎭 鎹鏈 拰鏃堕棿琛娉曘嬭瀹氱 瑕眰锛 竴寰嬬闃挎媺浼 瀛椾功鍐欍傚 004骞 鏈 6鏃濇 004-04-26濄5銆 紑棰樻姤鍛婏紙鏂 尞 艰堪锛 瓧浣撹 鎸 畫浣撱 皬鍥涘彿锛岃闂磋窛 1.5鍊嶃姣 涓 璁 璁紙璁烘枃锛 寮 棰 鎶 鍛 1锛庣粨鍚 瘯涓氳璁紙璁烘枃锛 棰樻儏鍐碉 规嵁鎵槄鐨勬枃鐚祫鏂欙 姣忎汉鎾板涓 浜000瀛楀乏鍙崇 鏂 尞 艰堪锛鏇茶酱鏄 彂鍔満鐨勪富瑕佽繍鍔儴浠瀹冧笌杩炴潌銆椿 炵瓑闆堕儴浠剁粍 洸勮繛鏉嗘満鏋 槸灏嗘椿 炵 寰嶈繍鍔浆鍙樹负鏇茶酱鐨勬棆杞繍鍔 鍚屾椂灏嗕 簬娲诲 涓 鍔涜浆鍙樹负鏇茶酱 杈撳嚭鐨勮浆鐭 浠鍔苯杞溅杞浆鍔傛洸勮繛鏉嗘満鏋勮繕蹇呴鍚屾椂椹 姩閰 皵鏈烘瀯鍙婂瀹冭緟鍔 浣 傛洸杞fi 鏃嬭浆鏄 彂鍔満鐨 姩鍔 ,槸鏁 鏈烘 “”鐨勬 鍔 銆傛洸杞磋 负鍙戝姩鏈虹 濓 鏄 彂鍔満涓 嶈銆佽 佷 樼 闆 竴,瀹 浼 灏 鍙戝姩鏈虹 鍙 拰 銆傛洸杞存currency1鍙“ 椿 繛鏉 粍浼fi鐨 fl鏈 姘 彂鍔 鏃嬭浆鍙婂 杩愬姩鐨勬 ,浠 闄 鏈烘瀯鐨勮 鏁宸 杩 涓 洸杞” 細浜 敓寮 洸 斿 屾杞 鍔浠 細浜 敓鏂 銆傚 鏋滄洸杞 竴鏃 灏 璧瀹 瑕 ” 忎箣鎹 锛 涓 彂鍔満” 鎶 ,鎵浠 洸杞fi 寮 鍦 鍐 浜彂鍔満鐨 闈傚 鏇茶酱鐨 鏋 瑕蹇呴 鏇茶酱鏈 寮 銆傛鏇茶酱鐨 垰 闈 嶈,傛鍒氬 涓嶈 灏 鍚 鍔拰鎵 浆鎸 姩 ,浠 闄 斿 ,浣瀹” 鐨 浣滄 浠 嚭 栧 闄 鍛 鍙戝姩鏈虹 ,鏁洸杞 鏈 鐨 鏇插拰鎵 浆鍒氬 銆傚 湁蹇呰娣 叆鐮鏇茶酱鐨 拰鍒氬 ,浠 繚璇鏈虹 鍙 变簬鏇茶酱鐨 舰鐘 惰 瘮杈冨 鏉傦 忓吀鍔涘 鐨勬柟娉曡繘琛粨鏋 鏋愬 寰鏈 眬闄 鑰屾湁闄愬厓娉曚笉浠呰 绠簿 珮锛岃繕 介傚 鍚 潅姸锛 垚涓轰簡琛 箣鏈 鐨 鏋 娈点傛湁闄愬厓鍒嗘瀽鐨 熀鏈 蹇垫槸 緝绠曠闂 浠浛 潅闂 鍚庡啀姹 銆傚畠灏嗘眰 煙鐪嬫垚鏄 敱璁稿绉颁负鏈夐檺 灏 浜掕繛瀛愬煙 勬垚锛 姣忎竴曞厓鍋囧 涓涓閫傜 (杈畝曠 锛 繎浼艰锛劧鍚 帹 眰 繖涓 煙 “ 婊 鏉 (傜粨鏋 骞宠 鏉 锛夛 浠 緱鍒伴棶棰樼 繖涓涓 槸 鑰屾槸杩戜技 鍥犱负瀹為檯闂 琚緝绠曠 闂 鎵浠浛 銆傜敱浜庡 氭 瀹為檯闂 句互寰楀 鎵浠 湁闄愬厓娉曟槸鏈鏈 鐨 鏋娈点傚 瀯 潅鐨勬洸杞磋岃锛屾垜浠 浠噰 疄浣撳缓妯 鏂紡涓 绠 栫寤虹珛鏇茶酱鐨 疄浣 鍨 骞堕氳繃涓撶閾炬 存 鍒鏈夐檺冨 鏋 蒋浠ANSYS 彂鍔満鏇茶酱杩涜 鏈夐檺冨 鏋愩 繖绉 柟寮 棦绗瀹為檯鎯 喌锛 浣滈噺 緱鍒颁簡绠 栥鏈 姣曚笟璁捐 闇瑕 鐞 寤虹珛鍙戝姩鏈烘洸杞fi畝 鍨 閫 嫨閫傚鐨 崟牸绫诲瀷锛 鏇茶酱鍦 笉鍚 鍐典笅杩涜鍙楀 鍒嗘瀽璁畻烘洸杞 鐨勮 凤 鍚 悊鐨 鐞嗘洸杞fi 绾潫鏉 锛 互渚 鍥涘啿绋嬬 鍒楀洓缂告洸杞 宸 鐘舵佷笅杩涜鍙楀 鍒嗘瀽锛 緱烘洸杞 宸 鐘舵佷笅鐨 鍔涗 鍥 骞 鍒嗘瀽 杩涜鍒嗘瀽鎵 嚭鏇茶酱宸 鐨 闄 儴鍒 傚 垜瑕佽 嗕簡 疄浣撳缓妯 蒋浠 ATIA鐨勪 柟娉曘 ATIA杞 涓嶢 NSYS鍒嗘瀽杞 鐨勬 缂 繛 柟寮忓拰 ANSYS鍒嗘瀽杞 鐨勪 柟娉曘傚鏋愬 浠 堕 鍙戝姩鏈 繍琛屾 鎹 互渚 绠楀嚭鏇茶酱鍦 浣 姸 佷笅鐨 鍔 浠 鏇茶酱鐨 鏉 浠 闃 鍒嗘瀽 銆鍙 枃鐚1璁稿 姹 溅鏋 M. 椾 锛氬闃插 涓氬嚭 锛012.2浣欏 姹 溅鐞 M. 椾 锛氭満 板 涓氬嚭 锛009.3 嬫 闄 娉 鏈夐檺currency1虹 鍙 NSYS M. 椾 绉戝 虹“ 2008.4鍚缓 姹 溅鍙戝姩鏈 鐞 M. 椾 锛氭満 板 涓氬嚭 锛013.5鍚fi锛 fl 撹.currency1轰簬Pro/E NSYS Workbench鐨 洓缂稿彂鍔満鏇茶酱鏈夐檺 鏋J.鏂鏈 宸 锛 014锛4):89-91.6鍒樻.鏇茶酱鍙傛 栧缓妯拰鏈夐檺冨 鏋D. 锛氭 姹”悊宸 瀛 2006.7璧 鍙戝姩鏈烘 鍒嗘瀽涓庡 琛D. 锛氱 瀛 2014.8 嬭.currency1轰簬UG/ANSYS鐨勬洸杞 鏁板寤烘 “”璁捐 鍙湁闄愬厓鍒嗘瀽 D. 锛氳椾閫氬 瀛 2012.9撳鏂囷 闄 .currency1轰簬ANSYS鐨N492鍙戝姩鏈烘洸杞存湁闄愬厓鍒嗘瀽J.鍐滀笟 涓溅杈 绋 2010锛29(8)锛9-33.10寮 锛岃 忓 锛 灏忓 锛 娲currency1轰簬 ANSYS鐨 彂鍔満鏇茶酱鏈夐檺冨 鏋J.鏈虹數鎶鏈 2013锛 紙3锛夛細102-102.11鍒樻.鍐 鏈烘洸杞 绠 D. 庡 锛氬 涓 瀛 2008.12 寤ANSYS14.0鏈烘 涓庣粨鏋 鏋湁闄愬厓鍒嗘瀽浠庡叆闂 M. 椾 锛氭満 板 涓氬嚭 锛013.13寰 寮锛浼 currency1轰簬 UG NSYS鐨 洓缂告洸杞存湁闄愬厓妯 鏋J.鏈烘 宸涓鍔锛 009锛55锛 锛夛細 17-19.14瀛欏 锛屾 挎 锛屾 .杈 鏉 悊 规洸杞存湁闄愬厓鍒嗘瀽鐨 J.姹 溅宸锛005锛7锛 锛夛細 724-726.15 涓鎵 嬫 currency1轰簬 Pro/E NSYS鐨勬洸杞存湁闄愬厓鍒嗘瀽J.鏈烘宸涓鍔锛007锛40(1):54-56.16姹 锛屾 .G495鍙戝姩鏈烘洸杞 鍔 鏈夐檺冨 鏋J.涓 鏈烘 锛 003锛19(2)锛4-26.姣 涓 璁 璁紙璁烘枃锛 寮 棰 鎶 鍛 2锛 湰璇 瑕佺舵 喅鐨 棶棰 拰熼噰 鐮鎵嬫锛堥斿緞锛夛細 涓銆 璇 鐮 栬 鍐崇 闂 閫氳繃ANSYS杞 鍒嗘瀽鍙戝姩鏈烘洸杞 宸 鐘舵佷笅鐨 鍔涘 鍙浜屻佺舵 娈碉紙閫斿緞锛1銆佽繍 ATIA杞 寤虹珛鍙戝姩鏈烘洸杞存 鍨2銆佽 绠楁洸杞 宸 鐘舵佷笅鐨 鍔3銆佺 瀹氳竟鐣 鏉 浠4銆 妯瀷杩涜鏈夐檺冨 鏋姣 涓 璁 璁紙璁烘枃锛 寮 棰 鎶 鍛 鎸囧 鏁欏笀鎰忚锛1锛庡 滄枃鐚患杩扳濈 璇勮 锛 介拡 硅 棰樻墍娑 鐨 棶棰 箍娉涢槄璇绘枃鐚 骞惰 硅 棰樼堕currency1 姸銆 姩 拰鍙戝睍 櫙绛 繘琛患鍚堝 鏋愬拰璇勮堪锛 鍚 枃鐚 患杩姹傘 2锛庡 鏈 棰樼 娣 銆 箍 宸 鎰忚 璁捐锛堣 鏂囷級 鐨 細 硅 棰樻墍娑 鐨 瀹 湁 稿叧涓撲笟鐭 瘑鐨 熀 涓婏 杩涗竴 繁 犵浉宠蒋浠 斿 藉 傛 瀹屾垚鏈姣曚笟璁捐銆 3.鏄 惁鍚屾 寮棰橈細鈭鍚屾 鈻涓 悓鎰鎸囧 鏁欏笀锛 2016 骞 03 鏈 09 鏃鎵鍦 涓氬 細鍚屾 璐熻矗浜猴細 2016 骞 04 鏈 07 鏃毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文译文题目: Autonomous Intelligent Vehicles 自动驾驶智能汽车 学生姓名: 王靖宇 学 号:1204104040 专 业: 车辆工程 所在学院: 机电工程学院 指导教师: 贾永刚 职 称: 讲师 2016 年 2 月 21 日说明:要求学生结合毕业设计(论文)课题参阅一篇以上的外文资料,并翻译至少一万印刷符(或译出 3千汉字)以上的译文。译文原则上要求打印(如手写,一律用 400字方格稿纸书写) ,连同学校提供的统一封面及英文原文装订,于毕业设计(论文)工作开始后 2周内完成,作为成绩考核的一部分。Chapter 2 The State-of-the-Art in the USA2.1 IntroductionThe field of intelligent vehicles is rapidly growing all over the world, both in the diversity of applications and research 3, 8, 18. Especially in the U.S., government agencies, universities, and companies working on this hope to develop autonomous driving entirely or in part for safety and for saving more energy. Many previous technologies, such as seat belts, air bags, work only after a traffic accident. Only intelligent vehicles can stop traffic accidents from happening in the first place. There- fore, DARPA has organized the Grand Challenges and the Urban Challenge from 2004 to 2007, which remarkably promoted the technologies of intelligent vehicles around the world. Hence, this chapter presents an overview of the most advanced intelligent vehicle projects which once attended either the Grand Challenges or the Urban Challenge supported by the DARPA in the USA.2.2 Carnegie Mellon UniversityBossThe research groups at Carnegie Mellon University had developed the Navlab series 8, 17, from Navlab 1 to 11, which include robot cars, tracks, and buses. The Navlabs applications have included Supervised Classification Applied to Road Following (SCARF) 6, 7, Yet Another Road Following (YARF) 12, Autonomous Land Vehicle In a Neural Net (ALVINN) 11, Rapidly Adapting Lateral Position Handler (RALPH) system 16. In addition, Sandstorm is an autonomous vehicle which was modified from the High Mobility Multipurpose Wheeled Vehicle (HMMWV) and competed in the DARPA Grand Challenge in 2005. The Highlander is another autonomous vehicle modified from HMMWV H1 which competed in same competition in 2005.Nevertheless, the latest intelligent vehicle is the Boss system (shown in Fig. 2.1) which won the first place in 2007 Grand Challenge 18. Boss combines various active and passive sensors to provide faster and safer autonomous driving in an urban environment. Active sensors include lidar and radar, and passive sensors include the Point Grey high-dynamic-range camera. The following functional modules were implemented on the Boss vehicle:Fig. 2.1 The intelligent vehicle, named Boss, developed by Carnegie Mellon Universitys Red Team (published courtesy of Carnegie Mellon University)1. Environment perception: Basically, the perception module provides a list of tracked moving objects, static obstacles in a regular grid, and vehicle localization relative to roads, road shape, etc. Furthermore, this module consists of four sub- systems, moving obstacle detection and tracking, static obstacle detection and tracking, roadmap localization, and road shape estimation.2. A three-layer planning system consisting of mission, behavioral, and motion planning is used to drive in urban environments. Mission planning is to detect obstacles and plan new route to its goal. Here, given Road Network Definition File (RNDF) encoding environment connectivity, a cost graph guides vehicles to travel on a road/lane planned by the behavioral subsystem. A value function is calculated to both provide the path from each way point to target way point, and allow the navigation system to respond when an error occurs. Furthermore, Boss is capable of planning another route if there is a blockage.The behavioral subsystem is in charge of executing the rules generated by the mission planning. In details, this subsystem makes decisions on lane-change, precedence, and safety decisions on different driving contexts, such as roads, intersections. Furthermore, this subsystem needs to complete the tasks, including carrying out the rules generated by the previous mission planner, responding to abnormal conditions, and identifying driving contexts, roads, interactions, and zones. Further- more, these driving contexts correspond to different behavior strategies consisting of lane driving, intersection handling, and achieving a zone pose. The third layer of the planning system is the motion planning subsystem which consists of trajec- tory generation, on-road navigation, and zone navigation. This layer is responsible for executing the current motion goal from the behavior subsystem. In general, this subsystem generates a path towards the target, and tracks the path.Fig. 2.2 The Stanford Universitys intelligent vehicle Junior that was the runner-up in the 2007 DARPA Urban Challenge (published courtesy of Stanford University)2.3 Stanford UniversityJuniorThe Stanford Universitys research team on intelligent vehicles has been one of the most experienced and successful research labs in the world. To better study and promote the applications of autonomous intelligent vehicles, the Volkswagen group founded the Volkswagen Automotive Innovation Laboratory (VAIL). Until now, Stanford University collaborated with the Volkswagen Group and built several intelligent vehicles, the Stanley (the autonomous Volkswagen Touareg that won the DARPA Grand Challenge in 2005 10), Junior (the autonomous Volkswagen Passat that was the runner-up in 2007 DARPA Urban Challenge 14). Moreover, Google has licensed the sensing technology from Stanley to map out 3D digital cities all over the world. We will introduce Junior that participated in the 2007 Urban Challenge below.Junior 14, shown in Fig. 2.2, is a modified 2006 Volkswagen Passat wagon, equipped with five laser range finders, a GPS/INS, five radars, two Intel quad core computer systems, and a custom drive-by-wire interface. Hence, this vehicle is capable of detecting an obstacle up to 120 m away.Juniors software architecture is designed as a data-driven pipeline and consists of five modules: Sensor interface: This interface provides data for other modules. Perception modules: These modules segment sensor data into moving vehicles and static obstacles, and also provide accurate position relative to the digital map of the environment. Navigation modules: These modules consist of motion planners, a hierarchical finite state machine, and generate the behavior of the vehicle. Drive-by-wire interface: This interface receives the control commands from navigation modules, and enables the control of throttles, brakes, steering wheels, gear shifting, turn signals, and emergency brake. Global services: The system can provide logging, time stamping, message- passing support, and watch-dog functions to keep the system running reliably.Furthermore, we introduce three fundamental modules: environment perception, precision localization, and navigation. In the perception module, there are two basic functions, static/dynamic obstacle detection and tracking, RNDF localization and update, where lasers implement primary scanning, and a radar system works as an early warning for moving objects in intersections as complement. After perceiving traffic environment, Junior estimates a local alignment between a digital map in the RNDF form and its current position from local sensors. In navigation module, the first task is to plan global paths, where there are two navigation cases, road navigation and free-style navigation. However, basic navigation modules do not include intersections. Furthermore, Junior strives to prevent itself from getting stuck in behavior hierarchy.Nowadays, researchers at Stanford University are still working on autonomous parking in tight parking spots1 and autonomous valet parking.2.4 Virginia Polytechnic Institute and State UniversityOdinThe team VictorTango formed by Virginia Tech and TORC Technologies developed Odin2 2, which took the third place in 2004 DARPA Grand Challenge. The Odin consists of three main parts: base vehicle body, perception, and planning.Now, we introduce the base vehicle platform. Odin is a modified 2005 Hybrid Ford Escape, shown in Fig. 2.3. Its main computing platform is a pair of HP servers, each with two quad-core processors.In the perception module, there are three submodules: object classification, localization, and road detection. Here, object classification first detects obstacles and then classifies them as either static or dynamic. The localization submodule yields the vehicle position and direction in the 3D world. The road detection submodule extracts a road coverage map and lane position.The planning module uses a Hybrid Deliberative-Reactive model, which consists of upper level decisions and lower level reactions as separate components. The coarsest level of planning is the route planner responsible for road segments and zones the vehicle should travel in. The driving behavior component takes care of obeying road rules. Motion planning is in charge of translating control commands into actuator control signals. Fig. 2.3 The intelligent vehicle Odin developed by the Team VictorTango (published courtesy of Virginia Polytechnic Institute and State University)2.5 Massachusetts Institute of TechnologyTalos Team MIT has developed an urban autonomous vehicle, called Talos3 (shown in Fig. 2.4) 1, 9, 13. There are three key novel features: (i) perception-based navigation strategy; (ii) a unified planning and control architecture; (iii) a powerful new software infrastructure. Moreover, this vehicle consists of various submodules: Road Paint Detector, Navigator, Lane Tracker, Driveability Map, Obstacle Detector, Motion Planner, Fast Vehicle Detector, Controller, Positioning Modules. The perception module includes obstacle detector, hazard detector and lane tracking sub- modules. Planning a control algorithm involves using a navigator, driveability map, motion planner, and a controller. The navigator plays an important role in mission- level behavior, and the rest of these submodules work together in a tight coupling to yield the desired motion control goal in complex driving conditions.Fig. 2.4 The intelligent vehicle Talos developed by the Team MIT (published courtesy of Massachusetts Institute of Technology)Fig. 2.5 The intelligent vehicle Skynet developed by Team Cornell (published courtesy of Cornell University)2.6 Cornell UniversitySkynetTeam Cornells Skynet4 is a modified Chevrolet Tahoe, shown in Fig. 2.5, and consists of two groups of sensors 15. One group is used for sensing vehicle itself, and the other group (laser, radar and vision) is for sensing the environment. Thanks to the above sensors, Skynet is capable of providing real-time position, velocity, and attitude for absolute positioning. Moreover, Skynets local map including obstacle detection information is the map of local environment surrounding Skynet. In many cases, autonomous driving in complex scenes is more than basic obstacle avoidance. Hence, the vehicle-centric local map is not enough for absolute positioning. We need to estimate environment structures using posterior pose and track generator algorithms.Skynet is using the probabilistic representation of the environment to plan mission paths within the context of the rule-based road network. One intelligent planner includes three primary layers: a behavioral layer, a tactical layer, and a operational layer. The goal of the behavior layer is to determine the fastest route to the next mission point. When there exist state transitions in the behavior layer, the corresponding component of the tactical layer is executed. Among the four tactical components, the road tactical component is to seek a proper lane and to monitor other agents in the same and neighboring lanes. The intersection tactical component handles intersection queuing behavior and safe merging. The zone tactical component takes care of basic navigation in unconstrained cases. The blockage tactical component implements obstacle detection and jud
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于ANSYS发动机曲轴有限元分析说明书论文
链接地址:https://www.renrendoc.com/p-10247788.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!