外文文献翻译.doc

180mm冲床自动送料机构设计【含6张CAD图】

收藏

资源目录
跳过导航链接。
180mm冲床自动送料机构设计【含6张CAD图】.zip
外文文献翻译.doc---(点击预览)
冲床自动送料机构设计(180mm).doc---(点击预览)
内含完整pdf打印版,word参考说明书公式部分自己可参考pdf稍作完善.zip
大齿轮.dwg
总装图.dwg
支撑垫.dwg
曲柄.dwg
螺栓.dwg
辊轴自动送料机构图纸汇总4张.dwg
高度调节组件.dwg
压缩包内文档预览:(预览前20页/共39页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10265447    类型:共享资源    大小:2.75MB    格式:ZIP    上传时间:2018-07-05 上传人:QQ14****9609 IP属地:陕西
50
积分
关 键 词:
mm 妹妹 冲床 自动 机构 设计 cad
资源描述:

180mm冲床自动送料机构设计【含6张CAD图】

【需要咨询购买全套设计请加QQ1459919609】图纸预览详情如下:


内容简介:
I冲 床 自 动 送 料 机 构 设 计 ( 180mm)摘要:在现代工业生产自动化领域里,材料的搬运、机床送料、整体装配等实现自动化是非常必要的。 然而送料是一想重复且十分繁重的工作, 为了消 除累积误差、 提高生产效率, 减轻体力劳动, 保证生产安全, 所以采用自动送料 机构是行之有效的方法。本文首先介绍了机构的选择, 接着讲述了自动送料机构原理与分析过程, 零 部件的设计与选择过程等。 最后通过校核、 修改等步骤后, 表明本设计中的双棍 轴齿轮送料机构设计适合设备的生产与需要, 并能够实现间歇送料与机械化与自 动化,从而大大地提高了生产效率。关键词:冲压;间歇送料;自动化Design of automatic feeding mechanism for punch(180mm)Abstract:In the field of modern industrial production automation, the to automation of material handling, machine feeding and assembly is necessary , and feeding is think of a repetitive and very hard . In order to eliminate the cumulative error , improve the production efficiency, reduce the physical labor and ensure the safety of production, the method of automatic feeding mechanism is adopteed.The principle and analysis process of automatic feeding mechanism, the design and selection process of parts are introduced in this paper. Finally through check, modify, and other steps, which indicates that the design of the roller type gear conveying mechanism design is suitable for the production and equipment needs, and can realize the mechanization and automation, thus greatly improve the production efficiency.Keywords: Punching ,intermittent feed, automationIII目录摘 要 .IABSTRACT .II1 绪 论 .11.1 冲 压 在 机 械 制 造 中 的 地 位 及 特 点 .11.2 国 内 外 研 究 现 状 .22 冲 床 自 动 送 料 机 构 总 体 方 案 设 计 .43 自 动 送 料 机 构 的 设 计 .63.1 送 料 机 构 的 概 述 .63.1.1 送 料 机 构 的 原 理 .63.1.2 辊 轴 送 料 机 构 的 送 料 时 间 及 其 调 整 方 法 .63.1.3 本 节 小 结 .73.2 辊 子 的 设 计 .73.2.1 辊 子 的 尺 寸 设 计 .73.2.2 压 紧 装 置 .83.2.3 抬 辊 装 置 .93.2.4 离 合 器 的 设 计 .93.2.5 驱 动 机 构 .103.2.6 本 节 小 结 .113.3 其 它 零 件 .113.4 轴 的 设 计 及 校 核 .113.4.1 下 辊 轴 的 设 计 .123.4.2 大 齿 轮 轴 的 设 计 与 校 核 .153.4.3 本 节 小 结 .183.5 轴 承 的 计 算 和 校 核 .183.6 齿 轮 的 设 计 及 校 核 .203.6.1 初 步 设 计 .203.6.2 齿 轮 的 校 核 计 算 .203.6.3 本 节 小 结 .243.7 键 的 设 计 和 校 核 .243.7.1 平 键 1 的 设 计 和 校 核 .243.7.2 平 键 2 的 设 计 和 校 核 .253.7.3 平 键 3 的 设 计 和 校 核 .253.7.4 本 节 小 结 .264 润 滑 与 密 封 .274.1 润 滑 .274.2 密 封 .27参 考 文 献 .28致 谢 .30附 录 A 英 文 文 献 .3111 绪 论冲床或称冲压机,是一种普遍使用的金属机械冷加工设备,冲压工艺由于比 传统机械加工来说有节约材料和能源, 效率高, 对操作者技术要求不高及通过各 种模具应用可以做出机械加工所无法达到的产品这些优点, 因而它的用途越来越 广泛。 随着机械行业向着先进制造技术方向的发展, 计算机技术在机械设计与制 造中的得到了广泛的运用, 对于我而言, 将学习到机械产品设计与制造方面的基 础知识与计算机辅助设计与制造技术相结合, 联系实际的机械产品结构设计, 既 可以强化机械设计意识,培养我的机械运动方案与结构创新能力。在现代工业生产自动化领域里, 材料的搬运、 机床送料、 整体装配等实现自 动化是非常必要的。 然而送料是一想重复且十分繁重的工作, 为了消除累积误差 、 提高生产效率, 减轻体力劳动, 保证生产安全, 所以采用自动送料机构是行之有 效的方法。 冲压是金属塑性变形成形加工的基本方法之一, 它主要用于加工板料 零件, 冲压既能够制造尺寸很小的仪表零件, 又能够制造大型零件; 既能够制造 一般尺寸公差等级和形状的零件, 又能够制造精密和复杂形状的零件。 冲压具有 生产效率高、 加工成本低 、 材料利用率高操作简单 、 便于实现机械化与自动化等 一 系 列 优 点 , 因 此 在 汽 车 , 机 械 、 家 用 电 器 、 点 击 、 仪 表 、 航 空 航 天 、 兵 器 等 生 产和发展具有十分重要的意义。 而自动送料冲床又具有高效率等特点, 所以说自 动送料冲床在今后的生产中具有很大的发展空间。1.1 冲压在机械制造中的地位及特点冲压既能够制造尺寸很小的仪表零件, 又能够制造诸如汽车大梁、 压力容器 封头一类的大型零件; 既能够制造一般尺寸公差等级和形状的零件, 又能够制造 精密 (公差在微米级) 和复杂形状的零件。 占全世界钢产 60%70% 以上的板材 、 管材及其他型材, 其中大部分经过冲压制成成品。 冲压在汽车、 机械、 家用电器 、 电机、仪表、航空航天、兵器等制造中,具有十分重要的地位。冲压件重量轻、 厚度薄、 刚度好。 它的尺寸公差是由模具保证的, 所以质量 稳定, 一般不需再经机械切削即可使用。 冷冲压件的金属组织与力学性能优于原 始坯料, 表面光滑美观。 冷冲压件的公差等级和表面状态优于热冲压件。 大批量 的中、 小型零件冲压生产一般是采用复合模或多工位的连续模。 以现代高速多工 位压力机为中心, 配置带料开卷、 矫正、 成品收集、 输送以及模具库和快速换模 装置, 并利用计算机程序控制, 可组成生产率极高的全自动冲压生产线。 采用新型模具材料和各种表面处理技术, 改进模具结构, 可得到高精度、 高寿命的冲压 模具,从而提高冲压件的质量和降低冲压件的制造成本。冲压生产的工艺和设备正在不断发展, 除传统的使用压力机和钢制模具制造 冲 压 件 外 , 液 压 成 形 以 及 旋 压 成 形 、 超 塑 成 形 、 爆 炸 成 形 、 电 水 成 形 、 电 磁 成 形 等各种特种冲压成形工艺亦迅速发展,把冲压的技术水平提高到了一个新的高 度。 特种冲压成形工艺尤其适合多品种的批量 (甚至是数十件) 零件的生产。 对 于普通冲压工艺, 可采用简易模具、 低熔点合金模具 、 成组模具和冲压柔性制造 系统等,组织多品种的中小批量零件的冲压加工。总 之 , 冲 压 模 具 有 生 产 率 高 、 加 工 成 本 低 、 材 料 利 用 率 高 、 操 作 简 单 、 便 于 实现机械化与自动化等一系列优点。 采用冲压与焊接、 胶接等复合工艺, 使零件 结构更趋合理,加工更为方便,可以用较简单的工艺制造出更复杂的结构件。1.2 国内外研究现状随着市场经济的发展,国内、国际市场竞争日益激烈,产品更新更为迅速, 尤其是随着机械行业的发展, 冲压制件类型、 工艺、 外形越来越复杂, 精度要求 越来越高,传统的冲床已经不能满足要求,以及制造冲压件用的传统金属材料, 正逐步被高强钢板、 涂覆镀层钢板、 塑料夹层钢板和其他复合材料或高分子材料 替代。 随着材料科学的发展 , 加强研究各种新材料的冲压成形性能, 不断发展和 改善冲压成形技术。在模具设计与制造中,开发并运用 CAD/CAM 系统,发展 高新制造技术和模具、 装置等, 以适应冲床产品的更新换代和各种生产批量的要 求。 推广应用数控冲压等设备, 进行机械化与自动化的流水线冲压生产。 要想提 高生产效率, 就必须提高生产的自动化程度, 自动送料机构就是为了实现生产中 送料工序自动化而设计的一种专用机构。 自动送料机构可将冲压料或冲压件经过 定向机构, 实现定向排列 , 然后顺序地送到机床或工作地点。 这在自动化成批大 量生产中显然是实用的,不但可以把操作人员从重复而繁重的劳动中解脱出来, 而且对保证安全生产也是一种行之有效的方法。 这使我国的机械制造业得到了质 的提升。目前, 我国汽车制造业飞速发展, 而对这一形势, 我国的板材加工工艺及相 应的冲压设备都有了长足的进步, 有重型机械压力机机器覆盖件生产线、 大型多 工位压力机、 数控板冲、 剪拆机床及柔性加工生产线、 无模多点成形压力机、 高 速压力机等国外冲压机床开始采用伺服电机进行控制。 中国冲压机床行业进过技 术引进、 合作生产及合资等多种方式的运作, 快速地提升了我国冲压机床设备整 体水平。 近年设计制造的许多产品, 其技术性能指标已经接近或达到世界先进水3平,但由于大家都在进步,所以国内成品与国外名牌产品的差距并无明显缩短。 因此, 我国冲压设备行业和企业须以战略的思路和有效的措施应对当前的机遇和 挑战。自动送料机构就是为实现生产中送料工序自动化而设计的一种专用机构。 自 动送料机 可将冲压料或冲压件经过定向机构,实现定向排列,然后顺序地送到 机床或工作地点。 这在自动化成批大量的生产中显然是实用的, 不但可把操作人 员从重复而繁重的劳动中解脱出来, 而且对保证安全生产也是一种行之有效的方 法。目前,国内拥有大量的冲压机床,如果能把它们改造成半自动或自动机床, 将会充分发挥机床的潜在力量, 这是一个具有重大意义的事情, 而在机床上安装 自动送料机构,这将大大提高冲压的生产效率,实现冲压的完全自动化。2 冲 床 自 动 送 料 机 构 总 体 方 案 设 计为了完成对冲压机床的自动送料过程, 本次采用机械送料机构, 目前国内外 有多种方式能达到自动送料,下面主要讲述了如何运用机械装置完成自动送料。冲床自动送料机构主要分为了送料装置、 压紧装置与传动件装置两类。 本设 计属于机械送料装置。 由于本次所给的材料比较薄, 只要能平稳顺利的完成送料 , 到达预期的送料精度, 根据其结构的难易程度与成本的高低, 双棍轴送料机构成 为了我们首选的机构。图 2.1 单边辊轴送料装置结构简图Sn - 为板料送进距离n - 为压机频次B - 为板料厚度H - 为冲压滑块行程 - 为许用压力角Fb - 为板料送进阻力Fr - 为冲压板料时的阻力 - - 为速度不均匀系数 e=0 取 R1=Rb底面至冲床工作台面距离为 2050mm板料送进运动原理: 大齿轮带动小齿轮运动, 同时上辊轴被压紧, 所以被上5下辊轴压住的板料就被带动向前行进。曲柄滑块运动原理: 曲柄可运动循环 360 度, 同时带动着滑块上下运动。 当 滑块运动到最低点时, 切掉板料, 同时板料送进运动停止。 当滑块完成切料, 又 向上运动时, 板料运动也开始运动。 板料送进运动和曲柄滑块上下运动是同时做 循坏运动,就顺利完成了自动送料。表 1.1 单边辊轴自动送料装置题目的原始数据方案Sn/mmn/次 /分B/mmH/mmFb/NFr/N/度Rb/mmR2/mmR/mmL/mmx/mmy/mm1 1801203 80 5902900250.0460 12018013003701250送料间距的大小按下式计算:s d1 240 90180mm360 360当送料间距 S 确定时,一般可以调节主动辊直径 d1 和转角,使送料间距 达到要求。辊轴的直径和送料时圆周速度和 S 转角密不可分, 主动辊的直径计算方式为D 360S1 从动辊的作用相对小一些, 自然结构上的设计也比较简单, 为保证两滚轴能 同时运转,所以要求他们的齿数与直径成比例。d1 Z1 d2 Z2在送料时需要先将材料放在送料装置上, 所以要将上辊抬起, 所以需要我们 设计一个抬辊的装置, 有两种作用。 一种是在开始装料时需要将上棍子抬起, 使 两辊之间有一定的间隙, 以便材料能顺利通过。 另外一种抬辊的作用是在当每次 把材料送进去之后, 在冲压工作之前, 让材料不受任何约束。 第一次采用手动抬 棍,需要在上辊装一个手柄,以便于手动抬棍 ;第二次抬辊动作需要我们设计 杠杆式抬辊装置,利用螺杆来推动杠杆完成抬辊动作。3 自 动 送 料 机 构 的 设 计3.1 送料机构的概述3.1.1 送 料 机 构 的 原 理图 3.1 机构送料与运动循环图从图 3.1 可知,冲床自动送料是由板料送进与滑块上下行进同时进行的。 板料送进运动原理: 大齿轮带动小齿轮运动, 同时上辊轴被压紧, 所以被上下辊轴压住的板料就被带动向前行进。 曲柄运动原理: 曲柄连接着两个运动,一个是曲柄滑块运动, 一个是曲柄摇杆运功。这两个运动是同时进行的,并且曲柄摇杆连接着板料送进运动。1.曲 柄 滑 块 运 动 原 理 : 曲 柄 是 绕 固 定 点 旋 转 , 并 且 带 动 着 滑 块 上 下 运 动 。 由 于曲柄不停循环 360 度作运动,则滑块也上下做周期性的运动。2.曲柄摇杆运动原理: 曲柄运动带动着大齿轮运动, 而大齿轮与小齿轮啮合 , 也就是顺着带动小齿轮向前转动。 由于小齿轮 (下辊轴) 与上辊轴合力压住了板 料, 板料同时也被带动着向前运动, 着也就是板料送进运动。 可知此时曲柄也不 停循环 360 度作运动,则齿轮运动也是周期性的运动。板料送进运动和曲柄滑块上下运动是同时做循坏运动, 就顺利完成了自动送 料。3.1.2 辊 轴 送 料 机 构 的 送 料 时 间 及 其 调 整 方 法滑块的起点是滑块的最高点。 当滑块下降到开始时, 冲压的角度是冲压的开附录A 英文文献翻译Reconfigurable manufacturing systems: Principles, design, and future trendsAbstract :Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are cost-effective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.Keywords: reconfigurable manufacturing systems, responsiveness, intelligent manufacturing1 IntroductionThe world of manufacturing has changed dramatically in the last 100 years in response to economic and social circumstances. Driven by different requirements in various periods, manufacturing technologies and new paradigms have been introduced to address economic challenges, and respond to social needs. Facing the requirement of cost-effectiveness, Henry Ford invented the moving assembly line in 1913, which began the mass production paradigm. In the 1970s, the Japanese manufacturing industry started formulating lean manufacturing principles, and since then consistent product quality has been a major focal point. In the late 1970s, the development of computer numerical control (CNC) machines facilitated the creation of flexible manufacturing systems (FMS), which enabled producing a variety of products on the same manufacturing system 1.Globalization that began in the 1990s transformed the competitive landscape. Manufacturing companies started facing unpredictable market changes, including rapidly varying product demand, and frequent introduction of new products. This made the design of manufacturing systems for new factories a major challenge, because it impacts the factory performance for many years after the factory design. It became essential that new factories should possess a new type of manufacturing system A system designed for rapid responsiveness to unforeseen market surges and unanticipated product changes.In response to this challenge, in 1995, Dr. Koren proposed designing factories with new system architecture that he called “reconfigurable manufacturing system.” The RMS has an open system architecture that enables adding machines to existing operational systems very quickly, in order to respond (1) rapidly, and (2) economically to unexpected surges in market demand 2. Utilizing RMS enables building a “live” factory that its structure changes cost-effectively in response to markets and customers needs, so it can keep supplying products at competitive price for many years after the factory design.In 1996, Dr. Korens proposal to form an “engineering research center forreconfigurable manufacturing systems” (ERC-RMS) was approved by the U.S. National Science Foundation (NSF). The ERC-RMS was established at the University of Michigan with a grant of 33 million USD for 11 years from NSF. Matching funds of 14 million USD were granted by industry and the State of Michigan. The center created the RMS science base and invented RMS technologies that were implementedin the U.S. automotive and aerospace industries, enhancing thereby the industry competitiveness.It is worthwhile to note that the State of Michigan is home to notable inventions in manufacturing. In 1913, the first moving assembly line, invented by Henry Ford, was installed at the Ford Highland Park plant in Michigan. The second breakthrough invention was numerical control that was invented by John Parsons 3 in his company in Traverse City, Michigan. The recent innovation is the RMS. RMS is a new type of manufacturing system that can change its system structure and resources rapidly and cost-effectively, in order to possess “exactly the capacity and functionality needed, exactly when needed.” Figure 1 illustrates how the inventions from Michigan have transformed the landscape of manufacturing paradigms.The ERC-RMS has defined the key characteristics for RMS, and invented patents and software packages that have provided the basis for developing new reconfigura-tion technologies. The developed technologies have been successfully implemented in U.S. automotive companies Ford, General Motor, and Chrysler which have increased their system responsiveness 4 and created substantial economic value for these firms 5. RMS is not only an open-architecture manufacturing system that can respond to the challenges of globalization 6, but also one that boosts productivity, enhancing thereby the competi-tiveness of manufacturing enterprises. RMS can also achieve agility and sustainable manufacturing 7,8.In this paper, we formulate the principles that guide the design and operations of RMS. According to these principles, we review and evaluate the state-of-the-art RMS design issues presented in the literatures. Possible future developments of RMS arediscussed as well.Fig. 1 Manufacturing inventions initiated in Michigan2 RMS characteristics and principlesThe three main goals of all manufacturing systems are cost, product quality, and responsiveness to markets. Respon-siveness is achieved by designing manufacturing systems for upgradable capacity and modifiable functionality. Comparing RMS with other types of manufacturing systems from the perspective of these goals, highlights the advantages of RMS. RMS combines advantages of dedicated lines and flexible systemsIn the last decades of the 20th Century the manufacturing industry utilized two types of common manufacturing systems: Dedicated manufacturing lines (DMLs) and FMSs. DMLs are designed to enable mass production of a specific product at a very low cost and very high throughput. FMSs are designed to enable production of any product (confined within a geometric envelope), but compared with DMLs their throughput is very low.The DML is designed with fixed automation that produces the companys core product at a very high rate. During the production, many tools can operate simultaneously on every machine in the line, leading to extremely high system throughput. The DML structure is fixed and cannot be changed neither to increase the throughput nor to produce a different product. If the market requires higher throughput, the DML cannot supply the full demand and the firm loses sale opportunities and consequently may lose market share. If the market requires a different product, the DML is useless and must be scrapped.By contrast, FMSs possess general flexibility that can produce a variety of products, but their production is by far more expensive than producing on DMLs. The FMS consists of general-purpose CNC machines and other forms of programmable automation. By contrast to a DML machine on which many tools operate simultaneously, each CNC machine uses a single tool during its operation. Therefore, the throughput of FMS is by far lower than that of DML (for the same investmentcost). The main drawbacks of FMS are the high investment cost (on both machines and tooling) and the relatively low throughput. Due to the high investment on CNC equipment, and the large number of cutting tools in the system, producing high volumes on FMS becomes a significant economic issue.The main advantage of RMS is that its functionality and capacity can be changed (1) rapidly and (2) cost-effectively. It is a feature that neither a DML nor an FMS possesses. The throughput of RMS is higher than the FMS throughput, but it is lower than that of a DML (for the same investment cost). The RMS is designed around producing a family of parts (e.g., cylinder heads, which are manufactured in reconfigurable machining systems) or products (e.g., engines, which are assembled in reconfigurable assembly systems), so its flexibility is by far higher than that of aDML. A thorough comparison of these three types of manufacturing systems is presented in Ref. 9, and their comparison with adjustable manufacturing systems is presented in Ref. 10. Core characteristics and principles of RMSThe RMS is defined as follows: An RMS is designed at the outset for rapid change in structure, as well as in hardware and software components, in order to quickly adjust its production capacity and functionality within a part family in response to sudden changes in market or regulatory requirements.The RMS possesses six core characteristics that are summarized in Table 1. The six core RMS characteristics reduce the time and cost of reconfiguration,thereby enhancing system responsiveness. They are widely implemented today in the automotive, aerospace, food and beverage industries in the U.S. Based on these RMS core characteristics, the following RMS principles are formulated.RMS principles: Design manufacturing system capacity for cost-effective adaptation to future market demand (scalability); Design the manufacturing system for adaptation to customers new products (convertibility); Design optimally embedded product quality inspection into manufacturing systems (diagnosability); Design the manufacturing system around a product family (customization); 5)Maximize system productivity by reconfiguring operations and reallocating tasksto machines;6)Perform effective maintenance that jointly maximizes the machine reliability and the system throughput.The first four are system design principles that utilize the characteristics of “modularity” and “integrability” to enable cost-effective design. For example, at the system level, every machine is a module and the integration is done with material handling systems (e.g., a gantry or a conveyor). Principles 5 and 6 are system operational principles that improve the system productivity and reliability. Based on Principle 5, the ERC-RMS created system-balancing software that was implemented in 22 factories of General Motors and Chrysler and generated substantial savings. For example, Mr. Brian Harlow, VP Chrysler reported: “By using the ERCRMSline-balancing software, Chrysler succeeded in saving 10% of the operating costs on engine assembly lines in the Mack Avenue Engine Plant in Detroit, which is extremely significant.”Mathematical definitions have been proposed for the RMS key characteristics 11, especially for scalability 12, convertibility 13, and an integrated multiattribute reconfigurability index 14. These characteristics and principles are applied to the design of different types of reconfigurable manufacturing systems, including machining systems, fixturing systems, assembly systems, and material handling systems 15,16, by using various models 1720 and methodologies 21,22. Examples of reconfiguration technologiesIn order to illustrate the RMS core characteristics, three examples of reconfiguration technologies machine, inspection, and system are presented below.1) Reconfigurable machine toolsReconfigurable machine tools (RMTs) are designed for a specific range of operational requirements, and can be rapidly converted from one configuration to another. The design of the RMT is usually focused on a specific part family, and should be rapidly adjustable to changes in its structure and/or operations to manufacture various parts of that part family. The world-first patent on RMT was issued in 1999 23.Figure 2(a) shows an arch-type RMT that was built by the ERC-RMS and exhibited in 2002 at the International Manufacturing Show in Chicago. It was designed to drill and mill on inclined surfaces in such a way that the tool is perpendicular to the surface. This RMT is reconfigurable to five angular positions of the spindle axis ranging from15 to 45 at steps of 15, and the reconfiguration from one angle to another takes less than 2 min. It was utilized to mill and drill engine blocks at angles of 30 or 45.2) Reconfigurable inspection machineThe reconfigurable inspection machine (RIM) represents a class of in-process inspection machines that can be reconfigured to fit the inspected part geometry. The world-first patent on RIM was issued in 2003 24.Figure 2(b) shows an example of an RIM that is composed of a precision conveyor moving the part along one accurate axis of motion within an array of electro-optical devices, such as digital or line scanning cameras, and laser-based sensors. Depending on the part that is being measured, the location and number of sensors in the RIM canbe reconfigured to fit the geometry of the inspected part. The RIM depicted in Fig. 2(b) was configured to measure cylinder heads. On one side of the part there are two laser sensors; on the other side there are additional three laser sensors as well as an accurate computer-vision system.In 2006, General Motors installed an RIM that was developed by the ERC-RMS at its engine plant in Flint, Michigan. This RIM utilized machine vision to efficiently detect small surface pores ( 1 mm) on engine blocks at the line speed to inspect each part. Utilizing the RIM has significantly improved the quality of the product and greatly reduced the number of recalls because of noisy engines.Fig. 2 Reconfiguration machine tool (RMT) and reconfigurable inspection machine (RIM) developed at the ERC-RMS. (a) RMT; (b)RIM3) Reconfigurable manufacturing systemA typical RMS integrates CNC machines and several RMTs that are utilized to manufacture a family of products, as well as product quality inspection machines that inspect the product during its manufacturing (i.e., not only at the end of the production line). The structure of an RMS is easily changeable to enable adding more production resources. The option of reconfiguration by adding production resources should be planned at all levels,hardware, software and controls, to enable adding machines, in-line inspection stations, gantries, etc. The world-first patent on RMS was filled in 1998 25.The Ford Windsor Engine Plant that was designed and built in 19982000 contains about 120 CNC machines that are arranged in a reconfigurable system architecture that consists of 20 stages, with 6 machines per stage (as shown in Fig. 3) 26. Ford Motor Co. called this system: “Flexible, reconfigurable manufacturing system.” Flexible because the CNC machines can produce multiple product variants.Fig. 3 Ford Winsor Engine Plant with CNC machines 26Note that, at the system level, each CNC machine is a module, and its function can be converted when a new type of part is required to be manufactured by the system. At each stage of the system, there are multiple parallel CNC machines that are integrated into the system by using gantries to load and unload the CNCs. Furthermore, all the stages in the system are integrated into one large system by overhead gantries that transport parts between the stages. This system possesses the characteristic of diagnosability by including in-line inspection stations that are located next to critical machining stations. This system is scalable, namely, it is easy to add machines to the system to increase the system capacity. Actually, since 2000, the Ford plant went through three reconfigurations in which capacity was added. Note that, if the CNCs in some stages were replaced by RMTs that can process a certain part family, then the customization characteristic would be implemented.The RMS principles are widely used in the design of reconfigurable machines 27, machining systems 15, and assembly systems 16. Next, we review the related research problems in system-level design and operations. Different from other general reviews 11,15,16,22, this paper reviews the design and operations of RMSs according to the principles that we have formulated in Section 2.2.3 Design and operations of reconfigurable manufacturing systemsThe designer of a manufacturing system has to determine:1)The system configuration the way that machines are arranged and interconnected in the system;2) the equipment the number and type of machines, the material handling system, and the in-line inspection equipment; 3) the process planning assigning operations to each machine in the system.3.2 Selecting the system configurationThe performance (e.g., throughput) and characteristics (e.g., scalability) of the manufacturing systems signifi-cantly depend on the system configuration 28. We elaborate here on three types of manufacturing system configurations: Serial production lines, parallel systems, and reconfigurable manufacturing systems. The system type should be carefully determined at the system design stage because once determined, it cannot be changed in the future.Depending on the business goals of the manufacturing enterprise, four major performance metrics should be considered and prioritized when
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:180mm冲床自动送料机构设计【含6张CAD图】
链接地址:https://www.renrendoc.com/p-10265447.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!