已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1(i | j) be the loss incurred for taking action i when the state of nature is j.action i assign the sample into any class-Conditional risk for i = 1,a cjjii xPxR1 )|()|(Select the action i for which R(i | x) is minimumR is minimum and R in this case is called the Bayes risk = best reasonable result that can be achieved!ij :loss incurred for deciding i when the true state of nature is jgi(x) = - R(i | x)max. discriminant corresponds to min. riskgi(x) = P(i | x)max. discrimination corresponds to max. posteriorgi(x) p(x | i) P(i) gi(x) = ln p(x | i) + ln P(i)问题由估计似然概率变为估计正态分布的参数问题极大似然估计和贝叶斯估计结果接近相同,但方法概念不同1Please present the basic ideas of the maximum likelihood estimation method and Bayesian estimation method. When do these two methods have similar results ?请描述最大似然估计方法和贝叶斯估计方法的基本概念。什么情况下两个方法有类似的结果?IMaximum-likelihood view the parameters as quantities whose values are fixed but unknown. The best estimate of their value is defined to be the one that maximizes the probability of obtaining the samples actually observed.IIBayesian methods view the parameters as random variables having some known prior distribution. Observation of the samples converts this to a posterior density, thereby revising our opinion about the true values of the parameters.IIIUnder the condition that the number of the training samples approaches to the infinity, the estimation of the mean obtained using Bayesian estimation method is almost identical to that obtained using the maximum likelihood estimation method.111最小风险决策通常有一个更低的分类准确度相比于最小错误率贝叶斯决策。然而,最小风险决策能够避免可能的高风险和损失。贝叶斯参数估计方法。Vectorize the samples.Calculation of the mean of all training samples.Calculation of the covariance matrixCalculation of eigenvectors and eigenvalue of the covariance matrix. Build the feature space.Feature extraction of all samples. Calculation the feature value of every sample.Calculation of the test sample feature value.Calculation of the samples of training samples like the above step.Find the nearest training sample as the result.1Exercises1. How to use the prior and likehood to calculate the posterior ? What is the formula ?怎么用先验概率和似然函数计算后验概率?公式是什么?P(j | x) = p(x | j) . P(j) / p(x), 1)(jP1)|(xj2. Whats the difference in the ideas of the minimum error Bayesian decision and minimum risk Bayesian decision? Whats the condition that makes the minimum error Bayesian decision identical to the minimum risk Bayesian decision?最小误差贝叶斯决策和最小风险贝叶斯决策的概念的差别是什么?什么情况下最小误差贝叶斯决策和最小风险贝叶斯决策是一致的(相同的)?答:在两类问题中,若有 ,即所谓对称损失函数的情况,则这时最小风1221险的贝叶斯决策和最小误差的贝叶斯决策方法显然是一致的。theminimumerrorB2(|()(jj jjxp1ayesiandecision: tominimizetheclassificati1onerroroftheBayesiandecision. themini1mumriskBayesiandecision: tominimizetheri1skoftheBayesiandecision. if R(1 | x) R(2 | x) action 1: “decide 1” is takenR(1 | x) = 11P(1 | x) + 12P(2 | x)R(2 | x) = 21P(1 | x) + 22P(2 | x) 3. A person takes a lab test of nuclear radiation and the result is positive. The test returns a correct positive result in 99% of the cases in which the nuclear radiation is actually present, and a correct negative result in 95% of the cases in which the nuclear ra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东营低压电工考试题及答案
- 防水卷材行业研究报告
- 高中生物实验专题(人教版新课标所有实验)
- 高速铁路电力远动箱变设计方案简析
- 黄花菜行业发展趋势及竞争策略研究报告
- 2025年成都百万职工技能大赛(养老护理员)备赛试题库(含答案)
- 2020-2025年教师资格之中学美术学科知识与教学能力自我检测试卷B卷附答案
- 妊娠剧吐护理指南
- 双方协议书楼梯设计
- 碍景房拆除协议书
- 纪委日常监督培训课件
- 植物生理学实验指导
- 干部履历表(中共中央组织部2015年制)
- 新能源汽车电力电子技术全套教学课件
- Emily-Dickinson艾米丽-迪金森
- 急性胰腺炎(普外科)
- 读书分享交流会《全球通史》课件
- 国家开放大学汉语言文学本科“现代汉语专题”形成性考核04任务参考答案
- 人教版(2019)选择性必修第二册Unit 1 Science and Scientists Workbook Expanding Your World 课件
- 中学学校安全管理制度汇编
- 前置胎盘临床诊断与处理指南
评论
0/150
提交评论