




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1(i | j) be the loss incurred for taking action i when the state of nature is j.action i assign the sample into any class-Conditional risk for i = 1,a cjjii xPxR1 )|()|(Select the action i for which R(i | x) is minimumR is minimum and R in this case is called the Bayes risk = best reasonable result that can be achieved!ij :loss incurred for deciding i when the true state of nature is jgi(x) = - R(i | x)max. discriminant corresponds to min. riskgi(x) = P(i | x)max. discrimination corresponds to max. posteriorgi(x) p(x | i) P(i) gi(x) = ln p(x | i) + ln P(i)问题由估计似然概率变为估计正态分布的参数问题极大似然估计和贝叶斯估计结果接近相同,但方法概念不同1Please present the basic ideas of the maximum likelihood estimation method and Bayesian estimation method. When do these two methods have similar results ?请描述最大似然估计方法和贝叶斯估计方法的基本概念。什么情况下两个方法有类似的结果?IMaximum-likelihood view the parameters as quantities whose values are fixed but unknown. The best estimate of their value is defined to be the one that maximizes the probability of obtaining the samples actually observed.IIBayesian methods view the parameters as random variables having some known prior distribution. Observation of the samples converts this to a posterior density, thereby revising our opinion about the true values of the parameters.IIIUnder the condition that the number of the training samples approaches to the infinity, the estimation of the mean obtained using Bayesian estimation method is almost identical to that obtained using the maximum likelihood estimation method.111最小风险决策通常有一个更低的分类准确度相比于最小错误率贝叶斯决策。然而,最小风险决策能够避免可能的高风险和损失。贝叶斯参数估计方法。Vectorize the samples.Calculation of the mean of all training samples.Calculation of the covariance matrixCalculation of eigenvectors and eigenvalue of the covariance matrix. Build the feature space.Feature extraction of all samples. Calculation the feature value of every sample.Calculation of the test sample feature value.Calculation of the samples of training samples like the above step.Find the nearest training sample as the result.1Exercises1. How to use the prior and likehood to calculate the posterior ? What is the formula ?怎么用先验概率和似然函数计算后验概率?公式是什么?P(j | x) = p(x | j) . P(j) / p(x), 1)(jP1)|(xj2. Whats the difference in the ideas of the minimum error Bayesian decision and minimum risk Bayesian decision? Whats the condition that makes the minimum error Bayesian decision identical to the minimum risk Bayesian decision?最小误差贝叶斯决策和最小风险贝叶斯决策的概念的差别是什么?什么情况下最小误差贝叶斯决策和最小风险贝叶斯决策是一致的(相同的)?答:在两类问题中,若有 ,即所谓对称损失函数的情况,则这时最小风1221险的贝叶斯决策和最小误差的贝叶斯决策方法显然是一致的。theminimumerrorB2(|()(jj jjxp1ayesiandecision: tominimizetheclassificati1onerroroftheBayesiandecision. themini1mumriskBayesiandecision: tominimizetheri1skoftheBayesiandecision. if R(1 | x) R(2 | x) action 1: “decide 1” is takenR(1 | x) = 11P(1 | x) + 12P(2 | x)R(2 | x) = 21P(1 | x) + 22P(2 | x) 3. A person takes a lab test of nuclear radiation and the result is positive. The test returns a correct positive result in 99% of the cases in which the nuclear radiation is actually present, and a correct negative result in 95% of the cases in which the nuclear ra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠民消防知识培训课件中心
- 促销组合策略及运用方案
- 恶性高热专家共识课件
- 个人年度工作方案表
- 物业春节活动布置方案
- 幼儿园体育活动计划方案
- 下半年个人工作方案目标
- 2026届辽宁省凌源三中化学高一第一学期期末检测试题含解析
- 粤语进阶测试题及答案
- 物理安防试题及答案
- 2025年匹克球裁判试题及答案
- 2025规范家居装修协议
- 2025年广西继续教育公需科目考试试题及答案贯彻创新驱动发展战略打造
- 《初中必读名著导读:《水浒传》核心知识点与深度解读》
- “安全生产责任制”培训试题及答案
- 地调考试试题及答案2025
- 诊断学血管检查
- 2025年腾讯智慧零售日化行业数字化解决方案-腾讯云
- 2025年兵团职工考试试题及答案
- MAU控制逻辑检讨
- AB股有限公司章程律师版
评论
0/150
提交评论