风力发电系统中的远程故障管控系统设计【说明书论文开题报告外文翻译】
收藏
资源目录
压缩包内文档预览:(预览前20页/共50页)
编号:10276594
类型:共享资源
大小:6.38MB
格式:ZIP
上传时间:2018-07-09
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
50
积分
- 关 键 词:
-
风力
发电
系统
中的
远程
故障
设计
说明书
仿单
论文
开题
报告
讲演
呈文
外文
翻译
- 资源描述:
-
风力发电系统中的远程故障管控系统设计【说明书论文开题报告外文翻译】,风力,发电,系统,中的,远程,故障,设计,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
- 内容简介:
-
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:1. 调查研究、中外文献检索与阅读的能力。 2. 综合运用专业理论、知识分析解决实际问题的能力。 3. 定性与定量相结合的独立研究与论证的能力。 4. 实验方案的制定、仪器设备的选用、调试及实验数据的测试、采集与分析处理的能力。 5. 设计、计算与绘图的能力,包括使用计算机的能力。 6. 逻辑思维与形象思维相结合的文字及口头表达的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1、随着风电装机数量的增加和风场大多数处于地广人稀的荒僻之地,数据的记录和故障的检查需要大量的人工,而这些地方气候恶劣,因此需要一套功能齐全、性能可靠的数据采集和监控系统来管控风电机组的运行情况,实现对风电场数据的远程采集、记录、故障警报等。 2、进行技术资料的调研、收集、加工与整理。正确使用工具书,掌握从事科学研究的基本方法和撰写技术文件 3、设计系统的硬件电路和软件程序,包括详细的硬件设备配置,系统连接,程序调试等详细步骤; 4、最终完成一篇符合金陵科技学院毕业论文规范的系统技术文档,包括各类技术资料,电路图纸,程序等; 5、系统要有实际的硬件展示,并能够通电运行; 6、本系统要与整个系统能够配合运行; 7、能够完成各项任务,参加最后的毕业设计答辩。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1.按期完成一篇符合金陵科技学院论文规范的毕业设计说明书(毕业论文) ,能详细说明设计步骤和思路; 2.能有结构完整,合理可靠的技术方案; 3.能有相应的电气部分硬件电路设计说明; 4.有相应的图纸和技术参数说明。 5.要求液位控制系统能在实验室现有的设备基础上调试成功,并在答辩时完成实际系统展示。4主要参考文献: 1王哲.关于风力发电机组状态监测的思考J.中国设备工程,2007, (4):43-45 2刘原彬.大型旋转机械在线监测与故障诊断系统J.中国设备工程,2002, (7):43-45 3周洋.MW 级风力大电机组监测系统D.沈阳工业大学硕士论文,2009 4汪光阳,周义莲.风机振动故障诊断综述J.安徽工业大学大学学报,2006,23(1):64-68 5王瑞闯,林富洪.风力发电机在线监测与诊断系统研究J.华东电力,2009,37(1):190-193 6王华中.监控与数据采集(SCADA)系统及其应用.电子工业出版社,2010 7王道平,张义忠.故障智能诊断系统的理论与方法M.北京:冶金工业出版社,2001,5 8何正嘉,陈进,王太勇,褚福磊.机械故障诊断理论及应用M.北京:高等教育出版社,2010,6 9熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册D.中国科技文化出版社,2005,8 10胡小平,韩泉东,李京浩.故障诊断中的数据挖掘M.长沙:国防科技大学出版社,2009,10 11祝常红.数据出具采集与处理技术M.北京:;电子工业出版社,2008 毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.11.04-2015.11.28 在毕业设计管理系统里选题 2015.11.29-2015.12.16 与指导教师共同确定毕业设计课题 2015.12.17-2016.01.10 查阅指导教师下发的任务书,准备开题报告 2016.02.25-2016.03.09 提交开题报告、外文参考资料及译文、论文大纲 2016.03.09-2016.04.28 进行毕业设计(论文) ,填写中期检查表,提交论文草稿等 2016.04.29-2016.05.09 按照要求完成论文或设计说明书等材料, 提交论文定稿 2016.05.09-2016.05.13 教师评阅学生毕业设计;学生准备毕业设计答辩 2016.05.14-2016.05.21 参加毕业设计答辩,整理各项毕业设计材料并归档 所在专业审查意见:通过 负责人: 2016 年 1 月 12 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000 字左右的文献综述: 稳定、可靠和清洁的能源供应是人类文明、经济发展和社会进步的保障,煤炭、石油、天然气等化石能源支持了人类近两百年的文明进步和发展。然而化石燃料的大量消耗不仅让人类面临资源枯竭的压力,同时也感觉到环境恶化的威胁。风力发电是目前世界上增长速度最快的能源,我国风力资源丰富,总资源量达20 万千瓦。陆地加上近海的风力资源有 15 亿千瓦以上,海上可开发利用的风能储量约 7.5 亿千瓦。截至 2008 年底,我国累计的风力装机容量达到 1324 万千瓦。随着风力发电机的装机容量和规模在逐年增长的趋势,风电装备缺乏有效的故障在线监测方法。文献1 针对风力发电机中的主要故障部件,如齿轮箱、发电机、叶片等,介绍现有状态监测和故障诊断方法的研究现状。结合风力发电机工作在变转速、不稳定载荷等工况下的特点, 研发适合于风力发电机特点的在线状态监测和故障诊断系统。文献2 对风能转换系统传动部分建立故障数学模型,在未知干扰情况下构造它的自适应故障观测器,检测风能转换系统传动部分故障,并对故障进行估计。文献3 利用对振动信号的实时监测,系统便可从振动信号来进行状态识别。这样一套风力发电机故障诊断系统,首先要在不妨碍机器运转的情况下,使传感器尽量靠近振源安装,从多个角度和方向来选好测点和探头位置,对运行的发电机常见故障(正常、转子不对中、轴向裂纹和油膜震荡)进行振动位移的测量,并对故障情况进行振动信号模拟。文献4 对风力机易发故障部位进行状态监测和故障诊断,提供实时可视的工作状态数据,对已经发生的故障能迅速定位故障部位,并能预测未来一段时间内部件工作状态的趋势。系统通过压电式加速度传感器和霍尔电流传感器,采集发电机和齿轮箱在工作状态时的振动信号和电流信号,通过电荷放大器与采集卡进入工控机,在工控机上进行数据库的读取和存储,利用多天线技术、提高发射和接收增益等方法建立覆盖范围较大的 Wi-Fi 网络,实现风力机与主控端之间的无线通信,采集到的数据传输至主控终端后进行分析和诊断,利用小波包分析和傅里叶变换相结合对信号处理,提取信号中隐藏的故障特征向量,最后通过 BP 神经网络对获取的特征向量进行分析,获取部件的故障部位和故障程度,同时利用神经网络对部件未来的工作状态进行预测。文献5 通过机理法分别建立风电系统的关键部件空气动力系统、传动系统、变桨距系统和发电机系统的数学模型,通过整合建立了整个系统的动态模型,研究风力发现系统的故障。文献6 利用将模糊逻辑与 SDG 模型相结合的改进 SDG 模型构建风机整机故障诊断模型的方法。风力发电机组是一种风能公里机械,风以一定的速度和攻角作用在桨叶上,使桨叶产生旋转力矩,转动轮毂,并通过低速轴、增速箱、高速轴等部件将风能转化为机械能,最后通过发电机将机械能转化为电能。在转化的过程中,通过在一些部位安装传感器来进行部位的数据采集,将采集的数据和发电机组正常运行的数据进行比较,从而做出报警、停机等一系列动作,从而进行风力发电机组的控制。参考文献: 1 陈雪峰,李继猛,程航,李兵,何正嘉. 风力发电机状态监测和故障诊断技术的研究与进展J. 机械工程学报. 2011(09) 2 杨阳. 含风力发电的电力系统故障诊断研究D. 燕山大学 2013 3 白宇君. 风力发电机故障诊断系统的研究D. 兰州交通大学 2014 5 李伟. 风电机组状态监测与故障诊断系统的设计与实现D. 华南理工大学 2014 6 梁泽. 风力发电系统的故障诊断与容错控制方法研究D. 华北电力大学2014 7 杨静懿. 风力发电机的整机故障诊断D. 东华大学 2014 8 侯彦娇. 风力发电机组控制系统容错控制研究D. 北方工业大学 2014 9 乔淑娟. 风力发电机组控制系统故障诊断研究D. 北方工业大学 2014 10 常勇.面向风电机组的齿轮箱轴承故障诊断技术研究D. 兰州理工大学 2014 11 李华伟. 风力发电系统的混杂控制技术研究D. 郑州大学 2014 12 叶飞.基于成本分析的小型风力发电机组供能系统的优化改进D. 山东大学 2015 13 周文晶. 基于数据的风力发电系统变流器的故障诊断研究D. 江南大学 2014 14 曹斌. 风电机组振动监测与故障诊断系统研究D. 广东工业大学 2014 15 宗永涛. 风力发电系统齿轮箱故障诊断策略研究D. 江南大学2015 16 薛小松. 无线传感器网络节点定位技术研究D. 江南大学 2013 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 1、研究设计内容(1)对风力发电机组结构进行研究,如何提高传感器安装点采集数据的精确度。 (2)对发电机组故障原因进行分析研究,提出故障的监测方法。 (3)利用单片机进行数据的比较和分析,从而实现风力发电的监控。 2、设计途径查阅相关文献学习风力发电机组的工作原理和故障诊断方法,掌握硬件电路的连接。结合所学过的单片机技术,运用各种传感器完成电路的连接。3、采取的研究手段 1、图书馆查阅书籍和报刊、网上查阅论文。 2、咨询指导老师等。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:文献综述对课题相关的一些资料进行了一些归纳和整理,详细说明了设计步骤和思路,提出了结构完整,合理可靠的技术方案,符合毕业设计的要求。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题的深度适中、有一定的广度,工作量饱满,通过本课题的锻炼可以提高学生调查研究、中外文献检索与阅读的能力,提高学生 综合运用专业理论、知识分析解决实际问题的能力。 3.是否同意开题: 同意 不同意指导教师: 2016 年 03 月 03 日所在专业审查意见:同意 负责人: 2016 年 03 月 08 日译文题目: Fault ride through and voltage regulation for grid connected wind turbine 电网连接风力涡轮机的故障穿越和电压调整 Fault ride through and voltage regulation for grid connected wind turbineabstractHigh penetration of wind generation challenges wind turbine operators to supply reliable power andextract optimum power from the wind.Hence, the fault ridethrough (FRT) capability of wind turbinetogether with the optimum power tracking and regulation of wind turbine output voltage due to fluctuating nature of the wind becomes essential. In this paper, a method is proposed to ensure that the double fed induction generator (DFIG) wind turbine continues to operate during severe grid faults and maintains a constant output voltage, irrespective of the fluctuating wind. The proposed controller also allows the DFIG wind turbine to track optimum power from the wind. Extensive simulation is performed using PSCAD/EMTDC software and results obtained show that the DFIG output voltage fulfills the grid code requirements.The results also show that the proposed method is able to track the optimum power, regulate the DFIG output voltage and perform fault ride through of wind turbine.1. IntroductionThe Earths climate is changing. The average global temperature has risen by 0.6 since the beginning of the 20th century. The effects of recent warming can be seen in an increased incidence of heat-waves, storminess and flooding, the retreat of glaciers and ice sheets, and altered responses in plants and animals. Although climate change is a natural and constant process, it has been highly influenced by the increasing atmospheric concentrations of carbon dioxide and other greenhouse gases. There is also general agreement that average temperatures are likely to rise even faster, particularly in the second half of this century, unless action is taken to limit and reduce greenhouse gas emissions. Hence, most of the countries are moving their electrical power generation to renewable sources such as wind, solar, tidal, hybrid system and so on. Wind energy is clean, abundant in source and has remarkable growth in the last decade. For instance, in the United States, the total installed capacity is 6350MW and it is projected that by 2020, the total installed capacity will touch 100,000 MW 1. There is about 58,982 MW of wind capacity installed worldwide in 2005, which generates nearly 1% of the world electricity especially in some countries such as Denmark, Spain and Germany 2.In present day, the most popular type of wind turbinesinstalled worldwide is the variable speed wind turbines, which has better advantages such as controllability of speed and flexible operation compared with fixed speed wind turbines. Other advantages of using variable speed generators include improved power quality, speed control, reduced mechanical stresses, decoupled control of active and reactive power as well as more power generation than fixed speed generator under the same circumstances 2.Two types of variable speed generator are commonly used. First type is direct-drive synchronous generator which is completely decoupled from the grid by a power electronics converter connected to the stator winding. The grid side of this converter is a voltagesource converter. The generator side can be a voltage-source converter or diode rectifier. The direct-drive generator is excited using an excitation winding or permanent magnets. Another type is double fed induction generator (DFIG) which also uses power electronics. One end of a back-to-back voltage-source converter feeds the three-phase rotor winding and other end connected to stator winding or power grid as shown in Fig.1. Among the two types, DFIG is more favorable due to the following facts.Economical converter cost, because converter rating generallycan be 1040% of total system power, while the speed range is also 33% around the synchronous speedCost effective converter filters and EMI filters since filters are rated for 0.1e0.4 pu of the total system power, and converter harmonics represent asmaller fractionof total systemharmonics.DFIG converter is able to decouple control of active and reactive powerDuring the fault, disconnection of wind generator can take place if the wind generator does not support the voltage dip or sag. Disconnecting a wind generator too quickly could have a negative impact on the power system grid, especially with large wind farms. Another issue is the mechanical power output from wind generator which is directly proportional to the torque of wind turbine. During fluctuating wind speed, the output voltage will also fluctuate. If voltage fluctuation is out of the limit, it introduces negative impact on the power system. From economic point of view, tracking optimum power from wind is economically effective for wind turbine operators. Present day technology is available to ensure that the wind turbine is connected to the grid during fault or network disturbance. Additional circuitry is utilized in order to overcome fault ride through capability or voltage regulation but at the expense of additional cost. However, future improvement is required for more reliable power system and because near future grid codes may require wind turbines to have better ride through capability and voltage regulation features. A novel control strategy for low voltage ride through (LVRT) for wind turbines with DFIG was discussed in ref. 1. The authors designed a controller using HN technique and m-analysis. Authors in ref. 2 investigated the performance of the wind turbines with DFIG during a voltage dip caused by an external short circuit fault. Authors in ref. 3 described a comprehensive time domain model of DFIG using decoupled dq controller, which was proposed to keep generator operating during transient grid faults. Authors in ref. 4 presented wind farm fault ride through capability and the performance of converter protection schemes based on different resistor protection with crowbar and series dynamic resistor. In ref. 5, the authors used a real time digital simulator (RTDS) to introduce a new control strategy for LVRT for DFIG and also used current limiters which are controlled by thyristor switches to counter the effect of fault on DFIG operation. Authors in ref. 6 used passive control to mitigate the voltage sag or swell. Authors in ref. 7 discussed the LVRT of wind farms using STATCOM compared to thyristor controlled static var compensator (SVC). The transient stability margin is proposed as the indicator of LVRT capability. A simplified analytical approach based on torque-slip characteristic is proposed to quantify the effect of the STATCOM and the SVC on the transient stability margin. Authors in ref. 8 used an additional circuitry which is Five-level cascade multilevel inverter based STATCOM to improve the fault ride through control strategy of wind farm as well as to mitigate voltage fluctuation. The improvement of dynamic model of DFIG wind generator and controllers for network unbalance gird fault ride through capability using PIeR current regulators is investigated in ref. 9. The improvement includes control of the grid- and rotor side converters (GSC and RSC, respectively) during voltage unbalance. Authors in ref. 10 discussed the enhancement of the fault ride through capability, which was achieved by inserting a series-connected voltage-source converter during the fault.In this paper, an improved controller which enables fault ride through, voltage regulation and optimum power tracking from the wind is proposed. The results show compliance with the Malaysian standard and the E.ON Germany standard.2. Grid requirementsThe number of wind farms or turbines installation has increased around the world in the last decade. The increasing number of wind farms connected to the grid has encouraged the power system operators to establish grid code requirements. These requirements impel the wind farms to contribute better quality and continuity of power supply. Grid requirements aremainly focused in the following aspects: voltage ride through, reactive power exchange, voltage control and power quality. However, the demanded requirements vary from one country to another and the behavior of the wind farm also has varying influence in the stability of power system. The general grid code requirement for Malaysia is shown in Fig. 2 11.The main requirement of typical grid codes, is summarized below.2.1. Voltage fluctuation rangeThe voltage fluctuation range for pre-fault or pre-disturbance in most of the utilities is generally 5% but it also depends on the voltage level 11.2.2. Continuous voltage operating rangeThe wind turbines are expected to operate within typical grid voltage variations. In most utilities, the continuous voltage range is from 0.9 to 1.1 pu 12.2.3. Reactive power capabilityThe wind farms are required to control their reactive power output. The power factor range is typically between 0.9 (lag) and 0.9 (lead), and may depend upon the region. The turbines can be required to regulate their terminal voltage 12.2.4. Fault ride through (FRT)During the occurrence of voltage sag, the turbines are required to remain connected for a specific amount of time before being allowed to disconnect. This requirement is to ensure that there is no loss of generation for normally cleared faults. Disconnecting a wind generator too quickly could have a serious negative impact on the grid, particularly dealing with large wind farms. In addition, some utilities require that the wind turbines help support the grid during faults.Fig. 3(a) shows different standard curves for different countries in the world. The E.ON standard is a popular one and is used as the reference in this paper. The E.ON standard demands the continuous connection of generator with the grid by operating above the curve, as shown in Fig. 3(b). Disconnection can take place if the voltage falls below the curve 13.As shown in Fig. 3(b), if the three-phase short circuit of faultrelated symmetrical voltage sag is above the limit line 1, it must not lead to instability of power system. On the other hand, there must be no disconnection of the wind turbines from the system. In the shaded area and above the limit line 2, the following are applied;(i) Plant should experience the fault without disconnection from the grid. If a generating plant cannot fulfill this requirement due to the gird connection concept, it is permitted to shift the limit line while at the same time reducing the resynchronization time and ensuring a minimum reactive power in feed during the fault。(ii) If the individual generator becomes unstable or the generator protection responds, a brief disconnection of the generating plant from the grid is allowed. At the start of disconnection, resynchronization of the plant must take place within 2 s at the latest 2.3. Methodology for DFIG wind turbineThe traditional vector control method with two PWM voltage fed current regulated inverters that are connected back to back in the rotor circuit is used in this paper. DFIG allows power output from the stator winding as well as the rotor winding. By using DFIG, it is possible to get a good power factor even though the machine speed is quite different from synchronous speed. Such machines can therefore operate without the need for excessive shunt compensation 14.Fig. 4 shows a simple layout of the proposed control method of DFIG. The stator of the DFIG is connected to the three-phase grid and the rotor is fed via the back to back IGBT voltage-source inverters with a common DC bus. The grid side converter (GSC) controls the power flow between the DC bus and the AC side, and allows the system to be operated in sub-synchronous (undersynchronous) and super-synchronous (over-synchronous) speed. The active power is generated by considering the wind speed and wind turbine characteristics while reactive power control is set with respect to the utility demand. The proper rotor excitation is provided by the rotor side converter (RSC).FromFig. 4, the DFIG control systemis fed with the reactive power setting , refQrotor speed , reference speed , stator voltage and current , rotor side and nrefsVsIgrid side currents, grid reactive power and bus voltage Vdc. The DFIG Qdcsystemcontrol outputs are the switching signals to the rotor- andgrid-side converters. The blades pitch control is also used in case of higher rotor speeds.To achieve the objective of this paper, the control ability of the DFIG variable-speed wind turbine also involves the turbine control for preventing over-speeding and the control of the power converter during faults. Many authors have described the modeling of wind turbines with DFIG in refs. 3,1419.3.1. Pitch angle control system strategyThe mechanical power generated by wind turbine follows the equation below:Therefore, the mechanical power ( ) depends on the wind speed ( ) and the mechPwVpower coefficient ( ), which is a function of the tip speed ratio ( ) and the pitch Cp angle ( ). ( ) is the air density and ( ) is the air sweeping area of turbine blade. 2RThe l is defined as the relation between the tip speed and the wind speed of the wind turbine:The relation between and l for different pitch angles of is shown in Fig. 5. As Cpshown in Fig. 5, function has the highest value of where the pitch 4.0maxCpangle . In order to capture the maximum power from wind, should equal to 0 zero. For minimum power, should equal 25 for 2 MW wind turbine 15. A pitch angle control is implemented to limit the generator speed during grid di
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。