05毕业设计论文.doc

基于ZigBee技术的灌溉控制系统设计【说明书论文开题报告外文翻译】

收藏

压缩包内文档预览:(预览前20页/共93页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10276597    类型:共享资源    大小:61.13MB    格式:ZIP    上传时间:2018-07-09 上传人:小*** IP属地:福建
50
积分
关 键 词:
基于 zigbee 技术 灌溉 控制系统 设计 说明书 仿单 论文 开题 报告 讲演 呈文 外文 翻译
资源描述:
基于ZigBee技术的灌溉控制系统设计【说明书论文开题报告外文翻译】,基于,zigbee,技术,灌溉,控制系统,设计,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
内容简介:
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:通过毕业设计,进行工程实践能力综合训练,掌握工程设计的一般程序和方法,培养学生综合运用所学知识和技能去分析和解决本专业范围内的工程技术问题能力。(1)进一步巩固、加深学生的基础理论、基本技能和专业知识。(2)培养学生独立思考、独立工作以及综合运用所学知识解决实际问题的能力。(3)培养学生综合设计能力,包括设计方案构思、比较与确定,器件的选用,仪器的使用,实验数据的测试、采集与分析处理等。(4)培养学生计算与绘图的能力,包括使用计算机的能力。(5)培养学生勤于思索、积极探索、严谨求实、团结协作、勇于创新的作风。(6)提高学生文献检索能力及从文献、调查研究、科学实验和生产实际中获取知识的能力。(7)通过撰写毕业设计说明书与毕业设计答辩培养学生文字表达、处理能力和语言表达的能力。2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):(1)本设计要求完成基于单片机和 ZigBee 技术的智能自动灌溉控制系统的设计。所设计的系统分为主控模块和两个从控模块两个部分。主控模块包括:单片机电路、按键电路、报警电路和显示电路等。从控模块包括:报警电路、湿度检测电路、水泵灌溉驱动电路等。主控模块和从控模块通过 ZigBee 无线通信模块进行无线数据传输。从控模块通过在每个灌溉区域埋设的湿度传感器采集土壤湿度信号,以 Zigbee 无线通信的方式将数据传输至以单片机为核心的主控模块,主控模块将数据能实时传输到上位机显示,并根据已经设定好的各区域的土壤灌溉湿度阈值,决定是否实施灌溉,并将控制命令无线传输至该区域控制模块。湿度测量范围:0100%RH 。各区域从控模块及主控模块均设有湿度报警装置,一旦某区域的土壤湿度高于或低于警戒湿度,立即发出报警。(2)设计控制系统的硬件结构。要求系统结构设计合理、安全可靠,要有设计框图、具体电路图和原理分析,并选择系统所用器件。(3)根据硬件结构,确定合适的软件结构和程序设计方法,绘制流程图并编写系统程序。(4)完成系统实物制作和软硬件调试。要求系统功能实现较好、性能稳定。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: (1)收集、整理与毕业设计课题有关资料,能够按时完成开题报告书。(2)按时完成毕业设计外文参考资料的翻译。(3)按期完成一篇符合金陵科技学院论文规范的毕业设计说明书。完成本毕业设计系统方案和结构框图的设计,技术设计方案合理,具有可行性;完成本毕业设计系统电路原理图设计;完成本毕业设计系统程序流程图和源程序的设计;完成系统实物制作和软件硬件调试,功能指标达到技术要求。(4)能够按时完成指导老师布置的课题任务,在设计过程中要有科学认真的工作态度,有关数据真实。在答辩前规定的各项资料要齐全。4主要参考文献: 1 纪建伟,鲁飞飞.ZigBee 技术在农业环境监测系统中的应用与研究J.农业网络信息,2011(01) :24-27.2 张洪润,刘秀英,张亚凡.单片机应用设计 200 例(上册)M.北京:北京航空航天大学出版社,2006.3 赵政华.基于 ZigBee 技术的无线温、湿度监测系统的设计与实现D.北京:北方工业大学,2010.4 左仲善,纪建伟,邹秋滢.ZigBee 在农业环境监测系统中的应用J.农业网络信息,2009,(7):49-52.5 徐爱钧,彭秀华.Keil Cx51 V7.0 单片机高级语言编程与 uVision2 应用实践M.北京:电子工业出版社,2004.6 金春,罗祖秋,罗凤.ZigBee 技术基础及案例分析M.北京:国防工业出版社,2008.7 杨将新,李华军,刘东骏.单片机程序设计及应用从基础到实践M.北京:电子工业出版社,2006.8 王翠茹,于祥兵,王成福.基于 ZigBee 技术的温度采集传输系统 J.仪表技术与传感器,2008(07) :103-105.9 王元庆.新型传感器原理及应用M.北京:机械工业出版社, 2008.10 樊尚春 .传感器技术及应用M.北京:北京航空航天大学出版社,2006.11 汪华斌,罗中良.基于 ZigBee 的数据采集监测系统设计J.计算机与现代化,2011(08):114-116.12 陈伟歌,阎有运,陈朝军基于 ZigBee 技术的仓库温度监测系统J现代电子技术, 2008,31(12):47-4813 赵娜,赵刚.基于 51 单片机的温度测量系统 J.微计算机信息,2007,3(4) :10-14.14 韩华峰,杜克明,孙忠富,等.基于 ZigBee 网络的温室环境远程监控系统设计与应用J 农业工程学报,2009,25(7):158-163 15 王福瑞.单片微机测控系统设计大全 M.北京:北京航空航天大学出版社,2005.16 周海瑞,截冠中,叶芳宏,等.ZigBee 在温室监控系统中的应用J 自动化仪表,2007, 28(8):48-4917 万福君,潘松峰单片微机原理系统设计与应用M. 北京:中国科学技术大学出版社,2006.18 陈海松单片机应用技能项目化教程M. 北京:电子工业出版社, 201219 武风波,强云霄.基于 ZigBee 技术的远程无线温湿度测控系统的设计J.西北大学学报(自然科学版),2008,38(5):731-734.20 王钦,陈忠辉,陈新.基于 ZigBee 的仓库温湿度采集系统的设计J.计算机与数字工程, 2009,37(9) :207-211. 毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.11.04-2015.11.282015.11.29-2015.12.162015.12.17-2016.01.102016.02.25-2016.03.092016.03.09-2016.04.282016.04.29-2016.05.092016.05.09-2016.05.132016.05.14-2016.05.21在毕业设计管理系统里选题与指导教师共同确定毕业设计课题查阅指导教师下发的任务书,准备开题报告提交开题报告、外文参考资料及译文、论文大纲进行毕业设计(论文) ,填写中期检查表,提交论文草稿等按照要求完成论文或设计说明书等材料,提交论文定稿教师评阅学生毕业设计;学生准备毕业设计答辩参加毕业设计答辩,整理各项毕业设计材料并归档所在专业审查意见:通过 负责人: 2016 年 1 月 12 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000 字左右的文献综述: (1)课题研究的目的与意义 中国是世界上 13 个严重缺水国家其中之一,人均水资源严重不足。农、林、园林绿 化灌溉耗水量是巨大的,而且农业生产、林业建设、环境绿化耗水是必须的。但是目前我国灌溉方式多为粗放型的人工或半自动化灌溉方式,这种方式存在着以下四种弊端:灌溉方式落后,水资源利用低;对植物或农作物的灌溉方式仍然是粗放式,缺乏针对性;灌溉多采用人工方式,增加了灌溉的劳动强度;仅是根据大致需要,定点或定时的进行灌溉,缺乏科学性。 本课题引入 ZigBee 技术进行区域的精准灌溉控制。系统通过 Zigbee 无线通讯技术远程的实时监控多个灌溉区域土壤的温湿度,并将当前灌溉区域的情况通过无线传输的方式传递给主控制室的电脑监控软件上。主控制室电脑上的监控软件会实时将接受的数据绘制成 2 条分别为区域温度、湿度的曲线和 1 条水平的参考线,使得数据更加科学直观,当灌溉区域的温湿度曲线偏离参考线达5 个单位,系统驱动阀门控制节点控制水泵的洒水。与传统的灌溉方式相比较:它提高了操作的准确性,有利于灌溉过程的科学管理,更重要的是它能准确、定时、定量、高效的给农作物自动补充水分,以提高农作物的产量并且节能。 (2)课题国内外研究现状与趋势远程监控技术是集计算机、网络、检测、自动控制等技术于一体的技术。远程监控技术的发展大致分三个阶段。第一阶段单机监控,主要针对单台设备或单一类型的设备进行监控。整个系统较简单,实现功能不多,监控范围有限,很多时候还需要人工配合,很难实现无人值守。第二阶段为集中控制,大部分情况下为主从式结构,多个从机将某一特定范围内的所有设备状态信息采集后发送到主机。主机根据控制采集的信息和控制要求给出控制命令。第三阶段是以网络为基础的远程监控,管理着可以通过网络远程管理工业现场,方便、快捷、有效。目前,21 世纪是信息时代的舞台,越来越多的新颖的技术被应用到农业中,基于 Zigbee 的无线网络传输技术就是其中一种,它具有数据传输安全可靠,组网简易灵活、设备成本低、电池寿命长等独特的优势,而基于 Zigbee 技术的无线智能灌溉系统具有低成本、可靠性好、可维护性高、适用性好等特点,能够满足我国智能节水灌溉发展的迫切需要。 国内很早就开始节水灌溉的研究,并且专家们对灌溉制度进行了多次试验研究并建立了全国灌溉试验资料数据库,数据库里主要记录了农作物的灌溉量和灌溉规律等。近年来主要对节水灌溉制度的研究,节水灌溉制度主要包括灌水时期、灌水定额和轮灌周期等内容。根据水与农作物生长、发育及产量的关系,通过一定水量在农作物发育期间的最优分配,以提高农作物根系吸收转化和光合作用向经济产量转化的效率为目标。但此期间的研究是基于传统的充分灌溉基础上的。总体来说国内目前的灌溉系统还处在雏形阶段,还需要不断发展研究。 在国外,节水灌溉的应用面积和产业化程度很高。目前约有 80 多个国家和地区推广应用微灌技术。像美国和前苏联的喷灌面积已经达到了总面积的 40%,而英国、德国、日本等国的旱地灌溉面积中 90%采用喷灌。很多发达国家的喷灌系统都是用多功能压力流量控制设备,比如法国和日本都是用集给水栓、压力控制、流量显示、水量控制等多功能压力流量控制给水栓。节能效果良好的喷灌技术也得到了广泛的应用,如日本灌溉系统中所使用的调压灌控制。而在微灌领域,美国和以色列水平都较为发达。另外发达国家发展高效农业的另一重要途径是灌溉管理的自动化。他们采用先进的节水灌溉制度,由传统的充分灌溉向非充分灌溉发展。对灌区用水进行检测预报,实行动态管理。微灌方式普遍普遍采用计算机控制,埋在地下的湿度传感器可以传回有关土壤水分的信息,还有的传感器系统能通过检测植物的茎和果实的直径变化来决定对植物的灌水间隔。总之目前国外灌溉系统已逐渐趋于成熟、系列化。并朝着大型分布式控制系统和小面积单机控制两个方向发展。产品与微机进行通信,并由微机进行控制。 参考文献: 1 章军富.基于 ZigBee 无线传感器网络的精准灌溉控制系统D.北京:北京林业 大学,2010. 2 赵燕东,张军,王海兰.精准节水灌溉控制技术M.北京:电子工业出版 社,2010. 3 尹飞虎,刘辉.现代农业灌溉节水适用技术M.北京:金盾出版社,2014. 4 迟道才.节水灌溉理论与技术M.北京:水利水电出版社,2009. 5 王建新,杨世凤,史永江.远程监控技术的发展现状和趋势J.北京:国外电子 测量技术,2005(4):9-14. 6 陈慧,霍家道.基于 TC35 设计的车辆监控系统J.应用科技,2003,30(12):35-36. 7 Siemens.TC35/TC37 Hardware Interface Description Vision04.00Z.2002.5. 8 张继伟.基于 TC35 的智能家居控制系统J.电子测试,2012(7):81-85. 9 郎需强.基于 ZigBee 和 GPRS 的远程果园智能灌溉系统的设计与实现D.山东 农业大学,2011. 10 高照阳,李保谦,杨东英.精确灌溉概述J.节水灌溉,2003,(04): 11 蔡甲冰,刘钰,雷廷武,许迪.精量灌溉决策定量指标研究现状与进展J.水科 学进展.2004,(04). 12 王芳琴.单片机控制的节水灌溉系统的研究D.华中农业大学,2005. 13 姜训宇,段生梅,母利.节水灌溉自动化技术的发展及前景分析J.安徽农学 通报(上半月刊),2011,(15). 14 高立艾,刘少博,李丽华.基于物联网技术的温室土壤环境监测系统的设计 J.节水灌溉,2012,(10). 15 瞿雷.一种新的无线网络通信技术ZigbeeJ.单片机与嵌入式系统应 用.2006,(01). 16 王元庆.新型传感器原理及应用M.北京:机械工业出版社,2008.6 17 余炽业.一种智能家居远程监控系统设计J.电测与仪表,2011(2):36-39. 18 周艳丽.利用 TC35i 和 PC机实现短消息的收发J.现代电子技术,2007(15):195-197. 19 Siemens co. AT command set siemens cellular enginesZ. German: Siemens AG,2002. 20 肖广兵,唐慧强.基于 TC35I 的无线数据采集系统的设计J.通信技术,2009(4):189-191. 21 J Han, CS Choi, I Lee.More efficient home energy management system based on ZigBee communication and infrared remote controls.Consumer Electronics.2011. 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 1)要研究或解决的问题:本课题旨在设计一款基于 ZigBee 技术的智能自动灌溉控制系统。该系统应具备以下功能:构建网状网络结构的大棚传感器网络,通过 SHT10 型土壤温湿度传感器检测当前土壤水分状态并上传网络中,单片机通过获取网络上的信息,决定是否打开水泵的阀门,异常情况语音报警提示;用户可以根据各区域农作物对土壤水分的不同需求,在主控中心灵活配置该区域的灌溉方案;主控中心通过 Zigbee 无线通讯模块可以实时获取各区域的土壤相对温湿度;各区域的灌溉任务由主控中心控制统一完成。设计内容如下: 1)设计思路。 2)系统总体方案制定,根据系统功能和控制要求给出总体框架。 3)系统硬件部分设计主要包括:Zigbee 无线通讯模块、单片机模块、串口通讯模块、温湿度检测模块,LCD 显示模块、语音报警模块、按键配置模块和水泵电磁阀门模块等部分设计。 4)系统软件部分设计主要包括:系统初始化,Zigbee通讯协议,串口发送与接收子程序,温湿度采集子程序,显示电路子程序,水泵阀门控制子程序及语音报警子程序等部分设计。 5)电脑端监控软件设计,包括:区域的温、湿度曲线显示功能,配置灌溉方案功能等。 (2)拟采用的研究手段(途径):基于 ZigBee 技术的智能自动灌溉控制系统设计分为主控模块和从控模块两大模块,主控模块用于处理各个从控模块发出的数据,从控模块用于采集各个区域内的温湿度数据;主、从控模块相互独立,使得各模块之间不会产生相互干扰,让操作者做起来比较容易;各个从控模块通过无线通讯ZigBee 技术组网,作为传输介质;使得各个模块相互结合,数据共享,完成自动灌溉系统的任务。每个从控模块由温湿度传感器、ZigBee 无线传输模块、单片机模块及水泵模块组成。温湿度传感器:湿度测量范围:0100%RH,温度测量范围:0100。温湿度传感器埋设在灌溉区域的土壤内,采集现场土壤温湿度的数据,传输到单片机内,单片机将数据处理后,经 ZigBee 无线通讯模块传输到主控模块;由主控模块控制经 ZigBee 无线模块来控制各个从控模块的水泵阀门,决定是否要灌溉。主控模块由液晶模块、PC 机、语音模块、按键模块、单片机模块及 ZigBee 无线通讯模块组成。单片机通过 ZigBee 无线模块接收到各个从控模块发送的温湿度数据,将温湿度数据显示到 LCD1602 及电脑端监控软件上。监控软件会实时将接受的温湿度数据绘制成曲线,程序会计算当前的温湿度曲线和灌溉参考线的差距是否在5 个单位,决定是否发送指令信号对相应的土壤实施灌溉;如果超出参考线5 个单位,语音模块发出报警语音;液晶模块会显示各个区域的温湿度测量值及设置温湿度阈值;电脑端监控软件界面显示各个区域的温湿度值和报警的区域号,并在电脑端监控软件上设置了配置灌溉方案的对话框,可以手动配置的各个区域的温湿度参考线值和差距值。主控设置的按键硬件模块,也可以完成同样的配置工作。在设计好系统硬件和软件后,制作控制系统实物,并调试系统软硬件,使系统功能实现较好、性能稳定,达到技术要求。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:针对基于 ZigBee 技术的灌溉控制系统,该同学阅读了大量相关文献,对该领域的研究意义、研究现状和发展前景等内容进行综合分析和评述。综述内容较为丰富,参考文献合理,对本课题的研究有一定的指导意义。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:基于 ZigBee 技术的灌溉控制技术相对成熟,深度中等,涉及到的知识面较广。通过本课题的设计,学生的专业综合应用能力会有一个较大的提高,对实际工作具有一定的指导意义。学生对课题研究任务、研究手段明确,希望能认真对待,通过实例调研、查阅专业资料、系统设计与调试等环节,圆满实现设计任务和要求。3.是否同意开题: 同意 不同意指导教师: 2016 年 03 月 04 日所在专业审查意见:同意 负责人: 2016 年 03 月 04 日 译文题目: More Efficient Home Energy Management System Based on ZigBee Communication and Infrared Remote Controls基于 ZigBee通信和红外遥控器更有效的家庭能源管理系统 More Efficient Home Energy Management System Based on ZigBee Communication and Infrared Remote ControlsJinsoo Han, Chang-Sic Choi, and Ilwoo Lee. IEEE Transactions on Consumer Electronics, Vol. 57, No. 1, February 2011.AbstractThis paper describes more efficient home energy management system to reduce power consumption in home area. We consider the room easily controllable with an IR remote control of a home device. The room has automatic standby power cut-off outlets, a light, and a ZigBee hub. The ZigBee hub has an IR code learning function and educates the IR remote control signal of a home device connected to the power outlet. Then the power outlets and the light in the room can be controlled with an IR remote control. A typical automatic standby power cut-off outlet has a waiting time before cutting off the electric power. It consumes standby power during that time. To eliminate the waiting time, we turn off the home device and the power outlet simultaneously with an IR remote control through the ZigBee hub. This method actively reduces the standby power. The proposed HEMS provides easy way to add, delete, and move home devices to other power outlets. When a home device is moved to the different outlet, the energy information of the home device is kept consistently and seamlessly regardless of location change. The proposed architecture gives more efficient energy-saving HEMS.Index Terms Home Energy Management, ZigBee, Remote Control, Standby Power, Energy Saving.I. INTRODUCTIONAs more and more home appliances and consumer electronics are installed, residential energy consumption tends to grow rapidly. A large number of home devices increase power consumption in two aspects, standby power and normal operation power.Those two kinds of power consumption are proportional to the number of home devices. As a result, operational cost in home area is also increasing. Standby power is electricity used by appliances and equipment while they are switched off or not performing their primary function. As around 10 % of a total household power is consumed during standby power mode, the reduction of standby power is greatly necessary to reduce the electricity cost in home.Many researches were performed to reduce standby power in the region of chip, circuit, board, and system.Those various technical researches contributed to the reduction of standby power of home devices.Normal operation power of home devices is also important to reduce the energy cost in home.Home appliances and consumer electronics account for about 27 % of home energy consumption.Therefore, the products with ENERGY STAR label are recommended to minimize the cost of operating the products during their lifetime. To reduce the normal operation power of home devices, service-oriented power management technology was proposed for an integrated multi-function home server. Although advanced integrated circuit (IC) chipset and hardware technologies enhance the standby power reduction and the normal operation power reduction of home devices, the current energy crisis and green house effect require more efficient energy management technology in home area. The capability of controlling and power monitoring of home devices are indispensable to achieve efficient home energy management in addition to the technology of standby power reduction and normal operation power reduction. The network capability is also needed to connect home devices with each other and to manage them remotely. The technology to manage home energy more efficiently with the network capability is known as home energy management system (HEMS). A PLC-based HEMS combining home network and the Internet was proposed.Architecture of home energy saving system based on energy-awareness was proposed for real-time home energy monitoring service and reducing standby power of home appliances. The embedded remote monitoring and controlling power socket was developed for automatic and power management of home appliances. However, the previous works just monitors and controls home devices, and shows the home energy information. Their standby power reduction method is passive. To reduce and manage home energy more efficiently, a more active standby power reduction method is needed and the controlling of the power outlets with a remote control should be enabled. A user-friendly and reconfigurable HEMS user interface (UI) is greatly necessary. In this paper, we propose more efficient HEMS based on ZigBee communication and infrared remote controls. In section II, we describe several previous works related to our paper. In section III, we propose and discuss a more efficient home energy management system. In section IV, we show the implementation results. Finally, in section V, we conclude and summarize our paper.II. RELATED WORKSA. Automatic Standby Power Cut-off outletAs described in the introduction, various technical researches were conducted to reduce standby power of home devices. Although home devices consume a very small amount of power in the standby mode, it is more efficient to completely cut off the electric power supply to those home devices. An automatic standby power cut-off outlet can contribute to the reduction of home energy cost. Fig. 1 shows the architecture of the automatic standby power cut-off outlet and the state transition diagram of it. The microcontroller is supplied with electrical power through the AC/DC circuit and includes ZigBee Radio Frequency (RF) module to communicate with ZigBee controller. ZigBee is a low-power and low-cost wireless personal area network standard (WPAN) based on IEEE 802.15.4 to configure wireless sensor networks.The monitoring circuit measures the power consumption and converts it into voltage. The microcontroller digitizes the voltage and calculates the consumed power. The power outlet has four kinds of state: boot, on, normal, and off. After booting, the power outlet goes to the on state. After the guard time elapses, the normal mode starts and the microcontroller monitors the consumed power. When the measured power is below the threshold value for the predetermined time, the microcontroller decides the connected home device is in the standby power mode and turns off the relay to cut off the power supply to the connected home device. It goes to the off state. When it receives a wake-up command from the ZigBee controller, it goes to the on state.This state transition repeats continuously.Fig. 1 Automatic standby power cut-off outlet. (a) Architecture (b) State transition diagramB. ZigBee Controller and Remote ControlTo control and wake up the power outlets, it is necessary to equip the ZigBee controller. Fig. 2 shows the configuration of the ZigBee controller and the connected end devices. Each button is assigned to the power outlets. A user can wake up the target power outlet by pressing the assigned button. To wake up the power outlet without pressing the button, the ZigBee controller has an IR code learning functionality. Each button of the ZigBee controller can be assigned to the button of an IR remote control. A user can control and wake up the power outlet without coming close to the ZigBee controller by using the IR remote control.Fig. 2 ZigBee controller connected with power outletsC. Home Energy Management SystemEnergy monitoring systems can influence residents by informing them of the real-time home energy usage with a graphical interface. If the breakdown energy usage of each home appliances and consumer electronics is displayed on a wall pad, a computer, or a television, residents can make an effort to reduce the home energy. Furthermore, web-based monitoring and control systems were developed to enable users to view home energy data and control home devices remotely through the Internet.Fig. 3 Web-based home energy management systemsA recent study found that 10 % of energy saving was achieved with a monitoring system providing real-time energy information. Fig. 3 (a) shows the home energy information UI on the web. It illustrates daily and weekly energy consumption of both total home and each home device. Fig. 3 (b) shows other examples of web-based home energy management system provided by Internet companies. A user can access the HEMS UI of his own home via a smart phone and is encouraged to control home devices to reduce home energy usage because he figures out home energy usage information of both total home and each home device simultaneously.III. PROPOSED HOME ENERGY MANAGEMENT SYSTEMFig. 4 shows the architecture of the proposed HEMS. The home has two rooms and each room is equipped with one dimming light, two power outlet, and one ZigBee hub. The dimming light and the power outlets include a power measurement function to measure the power consumption and the capability of ZigBee communication. The ZigBee hub is connected to the dimming light and the power outlets. The home server communicates with two ZigBee hubs. Through the configured ZigBee network the home server can monitor and control the lights and the power outlets. When a home device is connected to the power outlet, a user can register the home device in the HEMS UI of the home server by assigning the outlet number to it. The HEMS can monitor the energy usage of the home device according to the information from the corresponding power outlet. As a result, the HEMS of the home server can monitor and control the lights and the home devices. It displays hourly, daily, weekly, and monthly energy usage of each home device and encourages users to make efforts to save home energy. The HEMS can also display the real-time active power consumption and the accumulated power consumption of each home device. A user can figure out which home appliance is unnecessarily turned on through the real-time active power consumption and how much power each home appliance consumes in this month through the accumulated power consumption. He can also analyze the energy usage of each room through the ZigBee hub. A user can access the HEMS through the Internet in the remote area and turn off unnecessarily turned-on home devices.Fig. 4 Proposed HEMS architecture based on ZigBee communication and remote controlsWhen a user moves the home device to the other power outlet, it is necessary to change the assignment of the home device. He can change it in the user-friendly HEMS UI by clicking buttons several times. The accumulated energy usage information of the home device is managed seamlessly and kept consistent regardless of location change. Fig.5 shows consistent accumulation of energy usage information according to the change of location.Fig. 5 Consistent accumulation of energy usage informationThe power outlet has the automatic standby power cut-off function. The power outlet periodically monitors the power consumption of the connected home device. As soon as the monitored power consumption of the home device is below the threshold value for the predetermined period, the power outlet automatically cuts off the AC power to reduce the standby power consumption. The ZigBee hub has several buttons and an IR receiver. The buttons are assigned to the power outlets and the light. Its IR learning function enables the buttons of an IR remote control to correspond to the power outlets and the light. A user can control the light and the power outlets with both the buttons of the ZigBee hub and the IR remote control. When a user turns off a television with a remote control, the automatic standby power cut-off outlet waits for the predetermined period before transiting to the off state. Unfortunately, it consumes the electric power during that period. To reduce the power consumption during the decision time, we modified the ZigBee hub firmware. When a user presses the power button of an IR remote control to turn off a television, the IR signal can be simultaneously received by a ZigBee hub because the emission angle of a remote control is wide or the reflection of IR light is strong enough to reach the ZigBee hub. When the ZigBee hub receives a power button signal of a remote control and the monitored power consumption of that outlet is below the threshold, it decides that a user turned off a home device and commands the power outlet to cut off the AC power. If the ZigBee hub does not receive the IR signal, it operates according to the typical automatic standby power cut-off algorithm. This method actively reduces standby power consumption by turning off a home device and the power outlet simultaneously. Fig. 6 shows the firmware process flow chart of the ZigBee hub to control the power outlet connected to a home device. With an IR remote control, a user can command the home server to display the power consumption information of the room through the ZigBee hub and then check it at the home server.Fig. 6 The firmware process of the ZigBee hub to control the power outletIV. IMPLEMENTATION RESULTSFig. 7 shows the implemented power outlet with power measurement function, a ZigBee communication module, and a ZigBee hub. The power outlet uses an electric power metering chipset for compactness instead of a
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于ZigBee技术的灌溉控制系统设计【说明书论文开题报告外文翻译】
链接地址:https://www.renrendoc.com/p-10276597.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!