基于plc的冷库控制系统设计【说明书论文开题报告外文翻译】
收藏
资源目录
压缩包内文档预览:(预览前20页/共46页)
编号:10276612
类型:共享资源
大小:17.27MB
格式:ZIP
上传时间:2018-07-09
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
50
积分
- 关 键 词:
-
基于
plc
冷库
控制系统
设计
说明书
仿单
论文
开题
报告
讲演
呈文
外文
翻译
- 资源描述:
-
基于plc的冷库控制系统设计【说明书论文开题报告外文翻译】,基于,plc,冷库,控制系统,设计,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
- 内容简介:
-
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:通过毕业设计,使学生受到电气工程师所必备的综合训练,在不同程度上提高各种设计及应用能力,具体包括以下几方面:1. 调查研究、中外文献检索与阅读的能力。2. 综合运用专业理论、知识分析解决实际问题的能力。3. 定性与定量相结合的独立研究与论证的能力。4. 实验方案的制定、仪器设备的选用、调试及实验数据的测试、采集与分析处理的能力。5. 设计、计算与绘图的能力,包括使用计算机的能力。6. 逻辑思维与形象思维相结合的文字及口头表达的能力。2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1.本 课 题 要 求 利 用 所 学 的 专 业 知 识 , 进 行 冷 库 控 制 系 统 设 计 , 系 统 要 求 能 够 实现 对 冷 库 的 温 度 、 湿 度 、 报 警 等 功 能 要 求 控 制 。2.设计系统的硬件电路和软件程序,包括详细的硬件设备配置,系统连接,程序调试等详细步骤;3.最终完成一篇符合金陵科技学院毕业论文规范的系统技术文档,包括各类技术资料,电路图纸,程序等;4.系统要有实际的硬件展示,并能够通电运行;5.本子系统要与整个系统能够配合运行;6.能够完成各项任务,参加最后的毕业设计答辩。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1.按期完成一篇符合金陵科技学院论文规范的毕业设计说明书(毕业论文) ,能详细说明设计步骤和思路;2.能有结构完整,合理可靠的技术方案;3.能有相应的电气部分硬件电路设计说明;4.有相应的图纸和技术参数说明。5.答辩时完成实际系统的运行和展示。4主要参考文献: 1 初勤亭. 基于 PLC 的模糊参数自整定冷库控制系统研究J. 组合机床与自动化加工技术. 2008(08) 2 初勤亭,吕美进. 基于 PLC 的模糊参数自整定冷库控制系统研究J. 制冷与空调. 2008(04) 3 王帅. PLC 在自动化冷库中的应用J. 可编程控制器与工厂自动化. 2007(11) 4 刘敏娥,姜珊,杜丽芬. 冷库自动控制J. 制造业自动化. 2006(10) 5 赵政春,陆绮荣,孙秀桂. CAN 总线的冷库控制系统J. 计算机测量与控制. 2006(10) 6 叶湘明. 冷库的电气设计J. 电气时代. 2004(03) 7 单海校. PLC 在小型冷库压缩机控制系统中的应用J. 浙江海洋学院学报(自然科学版). 2004(01) 8 赵永美,于冰,冯菲. S7-200 的电梯模型控制系统J. 机械制造与自动化. 2004(06) 9 何玑刚,张成君,陈文祥. PLC 在冷库控制系统中的应用J. 低温与特气. 2001(03) 10 张云鸽. 小型冷库化霜回路的改造J. 能源与节能. 2015(03) 11 马聪,梁雪,王洪宝. 低温敞开式陈列柜的节能设计探讨J. 科技风. 2015(24) 12 吴集迎,马益民,陈仕清. LNG 冷能用于冷库的系统设计及分析J. 集美大学学报(自然科学版)网络版(预印本). 2010(01) 13 张新林,成耀荣. 基于系统动力学的冷库发展调控模型与仿真J. 铁道科学与工程学报. 2015(06) 14 昆明库乐冷藏设备有限公司J. 云南农业. 2014(07) 15 汤云武. 断热结构在可移动式冷库中的应用J. 科技视界. 2014(34) 16 农秉茂,杨伟兵. 中小型冷库节电技术探讨J. 漯河职业技术学院学报. 2014(05) 毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.11.04-2015.11.282015.11.29-2015.12.162015.12.17-2016.01.102016.02.25-2016.03.092016.03.09-2016.04.282016.04.29-2016.05.092016.05.09-2016.05.132016.05.14-2016.05.21在毕业设计管理系统里选题与指导教师共同确定毕业设计课题查阅指导教师下发的任务书,准备开题报告提交开题报告、外文参考资料及译文、论文大纲进行毕业设计(论文) ,填写中期检查表,提交论文草稿等按照要求完成论文或设计说明书等材料,提交论文定稿教师评阅学生毕业设计;学生准备毕业设计答辩参加毕业设计答辩,整理各项毕业设计材料并归档所在专业审查意见:通过 负责人: 2016 年 1 月 14 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000 字左右的文献综述: 随着世界经济逐步回升和结构调整加快,地球资源日趋匮乏,而随着我国经济步入快速发展期,现代居民生活水平的需求迅速提高,人们对生鲜冷冻食品需求量逐年上升。而据统计,目前我国的建筑能耗占全社会终端能耗的 25%以上,其中制冷空调的能耗量达到建筑物能耗的 60%70%。因此,开发更高效,更节约能源的制冷系统对于节约社会资源具有重要的意义。本课题设计的 PLC 冷库控制系统,通过应用变频调速技术与 PLC 自动控制技术到冷库的制冷系统中,大幅度节约电能,提高系统恒温控制的自动化程度。 自动化技术在冷库的制冷系统中的得到了广泛的应用。而社会经济的发展,对制冷的迫切需求同时促进了制冷技术的发展。1755 年爱丁堡的化学教授库仑发现可以利用乙醚蒸发使水结冰。他的学生布拉克从本质上解释了融化和汽化现象,导出了潜热的概念,并发明了冰量热器,标志了现代制冷技术的开始。在 1805 年,一名美国发明者Oliver Evans 设计了第一个用蒸汽代替液体的制冷系统,因为当时的技术条件有限,该机器并没有被制造出来。1834 年在伦敦工作的美国发明家彼尔金斯,申请了乙醚在封闭循环中膨胀制冷的专利,这是蒸气压缩式制冷机的雏型。1842 年,美国一名内科医生 John Gorrie 为了给换热病患者治疗,他设计和制造了一台空气冷却装置给病房降温。1859 年,法国的 Fredinad Carre 发明的使用快速蒸发的氨做制冷剂的制冷机。但是由于氨制冷剂有毒性,且蒸发氨的设备造价高,这种制冷技术并没有得到普遍应用。直到 1920 年,Frigidaire公司开发了几种人工合成制冷剂叫氟利昂的制冷剂,使得压缩式制冷机发展更快,逐步取代了氨制冷机。20 世纪 80 年代,因为发现氟利昂制冷剂对地球臭氧层破坏极大,氟利昂制冷技术逐渐被淘汰,使制冷剂又进人一个以 HrC 为主体和向天然制冷剂发展的新的历史阶段。目前国内中小型冷库较多,但冷库的压缩机控制大多仍采用继电器逻辑电路组成的控制器,这种控制器具有接线复杂、功耗高、工作寿命短、可靠性、通用性及灵活性低的缺点;而且大多数选用库房温度作为检测信号,反应慢,不经济。我国冷库的制冷设备大多采用手动控制,或者仅对某一个制冷部件采用了局部自动控制技术,对整个制冷系统做到完全自动控制的较少,货物进出、装卸等方面的自动化程度普遍较低。国外冷库的制冷装置广泛采用了自动控制技术,而他们采用的可编程控制器 PLC恰恰具有可靠性高、功能完善、组合灵活、编程简单、使用方便以及功耗低等特点。并采用压缩机的吸入压力作为检测参数,具有反应迅速,经济性能比高的特点。 针对中小型冷库,要求冷库的制冷系统成本不能太高,又要求制冷效果明显,自动化程度高,则选择基于 PLC 的冷库控制系统最合适。本课题,设计的 PLC 的冷库控制系统,使用变频器控制制冷设备,使用了温度传感器和空气湿度传感器采集冷库的温湿度数据,将检测到的数据发送给 PLC,PLC 经过数据分析后进行必要的处理保证冷库的恒温。 参考文献: 1 张洪臣,任益夫,李凤丽,王彦.基于 PLC 的农村小型冷库微电脑控制系统设计与试验J.农机化研究.2011,05. 2 单海校.PLC 在小型冷库压缩机控制系统中的应用J.浙江海洋学院学报(自然科学版).2004,01. 3 丁莉君.基于 PLC 的立体冷库控制系统设计J.物流技术.2014,17. 4 蒋颖.自动化冷库发展概述J.制冷与空调.2013,06. 5 张良.我国冷库设计问题的影响及安装要点分析J.化工管理.2013,10. 6 冯晓星,孟芳芳,张庆勇.基于 PLC 的新型冷藏库集装箱温控系统设计J.2009,1. 7 黄菊生,胡争先,唐唤清.基于 PLC 和 PC 的温控系统设计与开发J.自动化仪表.2005,04. 8 宋健.PLC 与 PC 机通讯在温室环境测控系统中的应用J.农机化研究.2004,02. 9 叶翠安,吴晶,卢晓春等.PLC 技术在冷库自动控制中的应用J.机电工程技术.2010,07. 10 刘敏娥,姜珊,杜丽芬.冷库自动控制J.制造业自动化.2006,10. 11 张君艳,石桂荣.PLC 在小型冷库恒温控制系统中的应用J.机械制造与自动化.2009,06. 12 侯文霞.PLC 在小型冷库变频调速控制中的应用J.2003,05. 13 张阳,单海,周东柳.基于 PLC 的节能制冷系统设计J.中国水运.2014,10. 14 李敏华,巫江虹.空气制冷技术的现状及发展探讨J.华南理工大学动力机械工程系.2005,04. 15 胡韩莹,朱冬生.热电制冷技术的研究进展与评述J.华南理工大学.2008,10. 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 本课题要研究或解决的问题是:本课题设计的 PLC 的冷库控制系统,能完成以下功能: (1)冷库的环境的温度、湿度信息的采集; (2)将采集到的温湿度模拟量信息通过 A/D 转换成数字量给 PLC; (3)当冷库的环境变化时,PLC 驱动变频器带动制冷设备,进行必要的制冷动作,将冷库的温度拉回平衡线; (4)在PC 上使用组态王软件,对冷库系统的运行进行模拟仿真,实时显示冷库的状态研究手段(途径): 1.去图书馆查阅相关资料,经过汇总,作为参考资料; 2.充分利用网络资源,进行相关信息的搜索; 3.以小组讨论的形式展开对课题的研究; 4.理论联系实际,利用学校创新实验室中的设备进行模拟仿真。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:综述内容较为丰富,参考文献合理,概括了课题所包含的研究内容的相关背景、基础知识、发展现状等,同时还对本课题所研究的任务进行了一定的阐述,对本课题的研究有一定的指导意义。2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题研究的任务是针对基于 PLC 冷库控制系统进行设计,应该说技术相对成熟,深度中等,但是涉及到的知识面较广,如果学生能认真对待,通过实例调研,查阅专业资料,相信能够实现最终的设计任务和结果,并对自己的专业应用能力是一个非常大的提高。3.是否同意开题: 同意 不同意指导教师: 2016 年 03 月 07 日所在专业审查意见:同意 负责人: 2016 年 03 月 08 日 译文题目:Automation of a solar adsorption refrigeration system太阳能吸附式制冷系统的自动化 Automation of a solar adsorption refrigeration systemAbstract:The purpose of this paper is to present the automation of a solar adsorption refrigeration system powered by a parabolic trough concentrator. This automation consists of the introduction of some adequate components such as solenoid valves, sensors (pressure, temperature and level) and pumps, which will be piloted by a programmable logic controller. Besides, to produce the electric energy necessary to the working of this refrigeration system and therefore to make it totally autonomous, a second system has been designed; it is composed of a parabolic dish reflector and a turbine coupled to an alternator that converts the mechanical work into electricity. Furthermore, in order to store the excess thermal energy delivered by the concentrator, a subsystem constituted of a pump and a supplementary reservoir is integrated to the main refrigeration system; the stored heat could serve to a domestic use. In addition to entire autonomy purpose of the unit during cold production, the simulation results showed that the proposed automation could enhance the system performance.Keywords: solar energy; adsorption; refrigeration; parabolic trough collector; automation.NOMENCLATURE AND ABBREVIATIONSmaxhinres1p2um3ResMaximum level of ammonia in the reservoir 3Minimum level of ammonia in the reservoir 3Level of the ammonia in the reservoir 3Pressure of the adsorber 1Pressure of the adsorber 2PumpLiquid ammonia reservoirExternal radius of the adsorbent bedrheatTiVHPWSTLPDRCTRadial coordinate in the adsorbent bedHeating temperatureValve iHigh Pressure and TemperatureHot Water Storage TankLow Pressure and TemperatureParabolic Dish ReflectorProgrammable Logic ControllerParabolic Trough CollectorI. INTRODUCTIONContrary to the fossil energy sources (oil, coal, gas, uranium, . ), the renewable energies present considerable assets : they use the inexhaustible natural resources (sun, wind, water, earth, . ), their exploitation neither contribute to global warming nor generate polluting gases and could play a vital role to satisty the increasing demand of energy due to the demographic growth and the economic development.In terms of solar energy, Morocco has a gigantic potential e.g. average irradiation of 5 kWh/m2 per day (it may reach 7.64 kWh/m2/day in Ouarzazate 1-2). This potential could be exploited in numerous applications as drying, sea water desalination 3, electricity production 4-5, heating 6-7 and cooling 8, etc.The cooling processes achieved by the means of the conventional machines are energy-hungry, especially when it is hot, and have moreover an ominous impact on the environment. The coincidence between the needs in cooling and the availability of the solar irradiation represents however an opportunity to overcome these problems through the development of the solar refrigeration technologies.Among the various techniques of cooling processes, the adsorption refrigeration systems are currently the focus of considerable attention because they present several advantages: they use environmentally friendly working fluids such methanol, ammonia, water, etc. (zero ozone depletion potential and zero global warming potential), their cheap working costs and low maintenance, are not noisy and could use some resources of renewable energies such as the solar energy 9.In spite of their advantages, these systems present some drawbacks, such as low coefficient of performance and intermittent character of the cycle, which constitute barriers to a more widespread application of this technology.Figure 1. Schematic diagram of the global system.Tn order to overcome these drawbacks, the automation of a continuous adsorption refrigeration system driven by parabolic trough collector (PTC) is proposed in this work. It consists of the integration of temperature, pressure and level sensors, which constitute the inputs of the programmable logic controller (PLC), give instantly the useful data on the working state of the system. According to the received data, the PLC, by means of a pre-established program, communicates to the refrigeration system the adequate orders via the solenoid valves and pumps, which constitute the outputs of the PLC.II. DESCRIPTION OF THE SYSTEMA schematic diagram of the global system is shown in Fig. I. It is composed of three parts: the first for electricity generation, the second for cold production and the last one is conceived to produce hot water.A. Electricity generation4-5,10To generate the electricity that should be supplied to some components of refrigeration system (PLC, solenoid valves, sun tracking system, fluid pumping, site lighting, battery charging), we propose the integration of a subsystem comprising the following elements: a parabolic dish reflector (PDR), that would produce the necessary electricity for the system. It tracks the sun in two axes and uses mirrors to focus radiant solar energy onto receiver located at the focal point of the dish. The thermal energy in a circulating fluid can then either be converted into electricity using an engine generator (Stirling engine) coupled directly to the receiver, or it can be transferred via a heat transfer fluid to a central power-conversion system (Fig.2). The receiver temperature could reach nearly 1500C 11- 14. a battery, that should be charged by means of the PDR and would give the electric energy necessary to the whole system working during the night or cloudy days.Figure 2. System of production of the electric energy.B. Cold productionThe production of the cold is achieved continuously by a solar adsorption refrigeration system 15, which is composed of the following components (Fig. 3): a parabolic trough collector that heats up the heat transfer fluid (water); two cylindrical adsorbers containing the activated carbon-ammonia pair; a reservoir of hot water, which allows heating of the two adsorbers and hence to generate the ammonia desorption; a reservoir of cold water, that allows cooling the two adsorbers and hence provoking the ammoma adsorption; a condenser, an evaporator, a storage tank of the liquid ammonia and solenoid valves; two circulating pumps: one for water pumping through the concentrator and the second for refrigerant (liquid ammonia) pumping.Water from th e hot water storage tank 1 (HWST1) is pumped through the receiver, placed along the focal line of the PTC, where it is heated and then flows back into the HWST1. The heat gained by the PTC from the solar radiation is accumulated in HWST1. Hot water from the storage tank is then used for heating the two adsorbers. The HWST1 temperature can be controlled by a differential thermostat controller.For producing cold continuously, the two adsorbers have to be operated out-of-phase, i.e. when one adsorber is being heated up and then desorbs refrigerant into the condenser under high temperature and high pressure, the other adsorber is cooled down and adsorbs refrigerant vapour from the evaporator under low temperature and low pressure.C. Hot water production To store the excess thermal energy delivered by the PTC and hence to produce hot water for domestic use, a subsystem comprising an additional hot water storage tank (HWST2) and circulating pump is integrated to the refrigeration system.Figure 3. Schematic diagram of the solar powered continuous adsorption refrigeration system.III. AUTOMATION OF THE SYSTEMTo automate different processes of the system working, it is proposed to utilize a control system comprising essentially a Programmable Logic Controller, which would control the opening or closing of different valves and pumps, according to the flow chart of the simulation program given in Fig. 4, which can be detailed as follows: Tn the beginning of the heating process, the temperature of the hot water storage tank 1 (HWST1) is lower than a minimal temperature chosen equal to Tmin = 70C, the PLC operates the valves V6, V15 and the pump 1; this allows to heat up progressively the water in HWST1. But, when the temperature of this tank reaches a maximal temperature taken equal to Tmax=100C, the heating process of HWST1 will stop, and heating of HWST2 will start (valves V16 and V17 will be opened).When the adsorber 1 is being heated up (valves V7 and V10 are opened, whereas valves V8 and V9 are kept closed) and then desorbs refrigerant into the condenser, the adsorber 2 is cooled down (V13 and V14 are opened; V11 and V12 are closed) and adsorbs refrigerant vapour from the evaporator.During the heating process of the adsorber 1, its pressure increases and when the value of the condenser pressure is reached, the valve 1 will be opened allowing the gaseous ammonia to flow toward the condenser, where it condenses and pass then to the reservoir 3.Simultaneously, the adsorber 2 is cooled down, its pressure decreases, and when this pressure reaches the evaporator pressure, the adsorber 2 is connected to the evaporator (pum 3 and V2 are opened) in which the liquid ammonia evaporates. The resulting refrigerant vapour is readsorbed into the adsorbent bed contained in the adsorber 2 (V4 is opened), while cooling is produced.From the data indicated by the different sensors (temperature, pressure and level sensors), which are integrated to the installation, the heating and cooling processes of the two adsorbers are automatically inverted when the temperature of the adsorber being heated is maximum, but also when the level of the liquid ammonia in the reservoir 3 (Res3) reaches its maximum value.IV. RESULTS AND DISCUSSIONTn order to put in evidence the effect of the automation on the efficiency of the solar adsorption refrigeration system, a numerical study, based on a computer program written in Fortran is presented in this section. This study was described in detail in a previous work 15. On the other hand, since the system operating is designed in a manner that the temperature of the HWST1 (heating temperature) ranges between 70 and 100 C, we have undertaken this study with
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。